• 제목/요약/키워드: stochastic optimal control

검색결과 130건 처리시간 0.019초

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

가관측적인 랜덤 학수를 가진 스토캐스틱 시스템의 최적제어 (Optimal Control of Stochastic Systems with Completely Observable Random Coefficients)

  • 이만형;황창선
    • 대한전기학회논문지
    • /
    • 제34권5호
    • /
    • pp.173-178
    • /
    • 1985
  • The control of a linear system with random coefficients is discussed here. The cost function is of a quadratic form and the random coefficients are assumed to be completely observable by the controller. Stochastic Process involved in the problem by the controller. Stochastic Process involved in the problem formulation is presented to be the unique strong solution to the corresponding stochastic differential equations. Condition for the optimal control is represented through the existence of solution to a Cauchy problem for the given nonlinear partial differential equation. The optimal control is shown to be a linear function of the states and a nonlinear function of random parameters.

  • PDF

OPTIMAL IMPULSE AND REGULAR CONTROL STRATEGIES FOR PROPORTIONAL REINSURANCE PROBLEM

  • RUI-CHENG YANG;KUN-HUI LIU;BING XIA
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.145-158
    • /
    • 2005
  • We formulate a stochastic control problem on proportional reinsurance that includes impulse and regular control strategies. For the first time we combine impulse control with regular control, and derive the expected total discount pay-out (return function) from present to bankruptcy. By relying on both stochastic calculus and the classical theory of impulse and regular controls, we state a set of sufficient conditions for its solution in terms of optimal return function. Moreover, we also derive its explicit form and corresponding impulse and regular control strategies.

New method for LQG control of singularly perturbed discrete stochastic systems

  • Lim, Myo-Taeg;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.432-435
    • /
    • 1995
  • In this paper a new approach to obtain the solution of the linear-quadratic Gaussian control problem for singularly perturbed discrete-time stochastic systems is proposed. The alogorithm proposed is based on exploring the previous results that the exact solution of the global discrete algebraic Riccati equations is found in terms of the reduced-order pure-slow and pure-fast nonsymmetric continuous-time algebraic Riccati equations and, in addition, the optimal global Kalman filter is decomposed into pure-slow and pure-fast local optimal filters both driven by the system measurements and the system optimal control input. It is shown that the optimal linear-quadratic Gaussian control problem for singularly perturbed linear discrete systems takes the complete decomposition and parallelism between pure-slow and pure-fast filters and controllers.

  • PDF

INDEFINITE STOCHASTIC LQ CONTROL WITH CROSS TERM VIA SEMIDEFINITE PROGRAMMING

  • Luo, Chengxin;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.85-97
    • /
    • 2003
  • An indefinite stochastic linear-quadratic(LQ) optimal control problem with cross term over an infinite time horizon is studied, allowing the weighting matrices to be indefinite. A systematic approach to the problem based on semidefinite programming (SDP) and .elated duality analysis is developed. Several implication relations among the SDP complementary duality, the existence of the solution to the generalized Riccati equation and the optimality of LQ problem are discussed. Based on these relations, a numerical procedure that provides a thorough treatment of the LQ problem via primal-dual SDP is given: it identifies a stabilizing optimal feedback control or determines the problem has no optimal solution. An example is provided to illustrate the results obtained.

THE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES

  • LEE, HYUNG-CHUN;LEE, GWOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.387-407
    • /
    • 2015
  • This paper analyzes the $h{\times}p$ version of the finite element method for optimal control problems constrained by elliptic partial differential equations with random inputs. The main result is that the $h{\times}p$ error bound for the control problems subject to stochastic partial differential equations leads to an exponential rate of convergence with respect to p as for the corresponding direct problems. Numerical examples are used to confirm the theoretical results.

데이터 기반 확률론적 최적제어와 근사적 추론 기반 강화 학습 방법론에 관한 고찰 (Investigations on data-driven stochastic optimal control and approximate-inference-based reinforcement learning methods)

  • 박주영;지승현;성기훈;허성만;박경욱
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.319-326
    • /
    • 2015
  • 최근들어, 확률론적 최적제어(stochastic optimal control) 및 강화학습(reinforcement learning) 분야에서는 데이터를 활용하여 준최적 제어 전략을 찾는 문제를 위한 많은 연구 노력이 있어 왔다. 가치함수(value function) 기반 동적 계획법(dynamic programming)으로 최적제어기를 구하는 고전적인 이론은 확률론적 최적 제어 문제를 풀기위해 확고한 이론적 근거 아래 확립된바 있다. 하지만, 이러한 고전적 이론은 매우 간단한 경우에만 성공적으로 적용될 수 있다. 그러므로, 엄밀한 수학적 분석 대신에 상태 전이 및 보상 신호 값 등의 관련 데이터를 활용하여 준최적해를 구하고자 하는 데이터 기반 현대적 접근 방법들은 실용적인 응용분야에서 특히 매력적이다. 본 논문에서는 확률론적 최적제어 전략과 근사적 추론 및 기계학습 기반 데이터 처리 방법을 접목하는 방법론들을 고려한다. 그리고 이러한 고려를 통하여 얻어진 방법론들을 금융공학을 포함한 다양한 응용 분야에 적용하고 그들의 성능을 관찰해보도록 한다.

A New Solution for Stochastic Optimal Power Flow: Combining Limit Relaxation with Iterative Learning Control

  • Gong, Jinxia;Xie, Da;Jiang, Chuanwen;Zhang, Yanchi
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.80-89
    • /
    • 2014
  • A stochastic optimal power flow (S-OPF) model considering uncertainties of load and wind power is developed based on chance constrained programming (CCP). The difficulties in solving the model are the nonlinearity and probabilistic constraints. In this paper, a limit relaxation approach and an iterative learning control (ILC) method are implemented to solve the S-OPF model indirectly. The limit relaxation approach narrows the solution space by introducing regulatory factors, according to the relationship between the constraint equations and the optimization variables. The regulatory factors are designed by ILC method to ensure the optimality of final solution under a predefined confidence level. The optimization algorithm for S-OPF is completed based on the combination of limit relaxation and ILC and tested on the IEEE 14-bus system.

추계 이선형 시스템의 상태추정 (State estimation of stochastic bilinear system)

  • 황춘식
    • 전기의세계
    • /
    • 제30권11호
    • /
    • pp.728-733
    • /
    • 1981
  • Most of real world systems are highly non-linear. But due to difficulties in analyzing and dealing with it, only the linear system theory is well estabilished. Bilinear system where state and control are linear but not linear jointly is introduced. Here shows that optimal state estimation of stochastic bilinear system requirs infinite dimensional filter, thus onesub-optimal estimator for this system is suggested.

  • PDF

A NUMERICAL SCHEME TO SOLVE NONLINEAR BSDES WITH LIPSCHITZ AND NON-LIPSCHITZ COEFFICIENTS

  • FARD OMID S.;KAMYAD ALl V.
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.73-93
    • /
    • 2005
  • In this paper, we attempt to present a new numerical approach to solve non-linear backward stochastic differential equations. First, we present some definitions and theorems to obtain the conditions, from which we can approximate the non-linear term of the backward stochastic differential equation (BSDE) and we get a continuous piecewise linear BSDE correspond with the original BSDE. We use the relationship between backward stochastic differential equations and stochastic controls by interpreting BSDEs as some stochastic optimal control problems, to solve the approximated BSDE and we prove that the approximated solution converges to the exact solution of the original non-linear BSDE in two different cases.