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Optimal Control of Stochastic Systems with
Completely Observable Random Coefficients
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Abstract

The control of a linear system with random coefficients is discussed here. The cost function is of a quadratic
form and the random coefficients are assumed to be completely observable by the controller. Stochastic Process
involved in the problem by the controller. Stochastic Process involved in the problem formulation is presented
to be the unique strong solution to the corresponding stochastic differential equations. Condition for the
optimal control is represented through the existence of solution to a Cauchy problem for the given nonlinear
partial differential equation. The optimal control is shown to be a linear function of the states and a nonlinear
function of random parameters.

1. Introduction
In some sense, every known deterministic
mathematical model can be considered as the
simplification of a suitable stochastic model. It may be
of interest in general to study stochastic functional
equations. Stochastic models based on the white noise
may be given by the following ordinary differential

equations:
f"d_ff = g, x4, ut) + h (&, 2(0) vf), (1-1)
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where vff) is a well-known white noise. The formal solu-
tion of (1-1) is given by

%() =%+ S:g(s, %(8), u(s))ds

+5:h(s, 2N (8)ds, 1-2)

x(0)=xo.
The white noise is the formal derivative of Brownian
motion w(t)

o) =240 (1-3)

The equation (1-1) is formally equivalent the differen-

tial form
dxt) =

gt x(t), u(t)) dt + hft, x(t) )dw®). (1-4)
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The equation (1-4) is meaningful only in sofar as its in-
tegral representation

D=0+ [ g(s, 1), u()ds
, (1-5)
+ Lh (s, x())dw(s).

In the normal sense, the equation (1-5) does not
make any sense, because the last integral in (1-5) can
not be defined by the usual Lebsgue-Stieljes sense. A
first step toward the development of a theory of
stochastic differential equations might therefore be a
definition of a stochastic integralV- ». Let x(¥) be a
stochastic process satisfying (1-5) for all t€[g, 7). Then
we say that x(#) is generated according to a stochastic
differential equation (1-4).

Most of the results in stochastic dynamic control are
due to® 7. In regard to problems with partial observa-
tion the best results in Wonham’s formulation of
separation principle® using stochastic Bellman dynamic
programming. Dynamic programming is a useful ap-
proach in stochastic control. However, these conditions
under dynamic programming are so much weak than
those required in the deterministic case.

A typical example is a stochastic control system with
random operated-valued coefficients® -, This paper
presents the problem of the optimal control of the
stochastic differential equation with random matrix-
valued coefficients. Sufficient conditions for an optimal
control are expressed through the existence of bound-

ed solution to a certain Cauchy problem for both Brow-
nian motion and random process disturbances is dealt
with in this study and these also include stochastic
bilinear systems'®.

2. Existence and Uniqueness of Solution

Let [Q, F, P] be a complete probability space, F,,
an increasing family of sub-s-algebra of * F, t€[ 0, T),
{x.}, an F, adapted process, and let wi = {w, (), F, }
and w? = {w,ft), F,} be independent of the Wiener
processes. The random variable x,(0) and x,(0) are
assumed to be independent of the Wiener processes
w} and w? of dimension ¢, and ?,. Let x,(8) and x,(t),
t€[¢), T be observable and continuous process of the
controlled diffusion type with
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dui(t) = Aft, %:(9) ) dt + Bft, %00)) w)dt + Gft, x,0))

dw,; 2-1)
dr, () = Cft, x,()) dt + D, x,()) dw.? (2-2)
100) = Xiy %20) = X,

Each of the measurable functional At,8) Bt6), G (%, 8),
C(t,6), and D(t, 8) is assumed to be nonanticipative and
have the dimension nxn, nxp, nxt, mxm, mxl,,
respectively. It means Y, measurable where Y, is the
¢g-algebra in the continuous finite space C, of the con-
tinuous functions § = {6(s), s<7T} generated by the
function 8, s<t.

The control #(#) is a feedback of the current state.
The problem is to find a control in an admissible con-
trol set U that minimizes the average cost functional
Ja) = E {§] L, xtt), uh) dt}, 23)

xl(t‘)

where x(l) = xz(t)] and the response to the control #(?).

The existence and uniqueness of the solution of 2-1)
are given in the following assumptions 71913 _For each
é: '7 ECT,

) uf) €U BLY u) € [0, T] x R™x U where U
is compact.

i) I ACEL + | CrBl + Bty + Ge +
DAMtY)] dt <co. (2-4)
Along with (2-4) assuring the existence of the integrals
in (2-1) and (2-2), we will also held the following
assumptions.

iiiy {7 CHt8) dt <w, inf DL&>K,, [0, T), (€C,

iv) 14, & ~AW@ 7+ IB@, &) ~BU,ni?
+16 O ~CEDI<K, [[18,-n,17
< dM()+Kslg—nel%,
1CE 6 -CU, I+ |DE, EH-DUE, |2
<K 18- n1M ) +Kelg-mil?,
V) A O +BG £ +6( £ <K, (146
cdM ) +HKQ 62,
Cl, D, &)?
<K +e0dM O+ K0+,
where M(s) is a nondecreasing right continuous func-
tion, with 0< M{s)<1and K, i=1, 2, ..., 5, are positive
constants.
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We consider the following equations of the solutions
of (2-1) and (2-2),

0lt) = %+ § Al ) ni(s)ds+ I Bls.xafs) Jus) ds +

(L6t x9) du? (2-5)

and
xaft) = %y + fo C(s, x4s))ds + _fo Dfs, x,(s) ) dw?, (2-6)
and we will see the existence of strong solutions and
uniqueness of (2-5) and (2-6).
Theorem 2.1

Let the nonanticipative functional A, n), Bfs, n), Gfs,
n), C6s, n), D, o), s € [0, T} satisfy the assumptions
iv) and v), and let [A(t,n)| > K. < o, Bft, ) < K; < o,

X117,
Then if [x ] is an F, -measurable random variable

2g
xl * 3 . . .
E[x ‘2’ }< oo, The stochastic differential equations (2-1)

2o

and (2-2) have a unique strong solution.
3. Optimal Control with the Complete Data

We consider the problems of optimal control for
solutions of the stochastic differential equations based
on complete data and fixed finite interval of time [0,
7). Consider again the following stochastic differen-
tial equations

du ) = Al x.0) 1:(0) dt + Blt, x.(0)uft) dt + G(t, 1,(1))
duw?*, (3-1)
dia(t) = Clt, xo(t)) dit + Dit, %(0) ) du?, o) = %, ER",
10 = %, € R,
where all dimensions are the same as the solutions
(2-1) and (2-2).
The problem is to choose a control law #(t) so

as to minimize the cost functional

J(wy = ELJT LG, %(&), w(®))dt].

For a solution of the optimal control we will in-
troduce the following assumptions.

1) The admissible controls consist of #(}): 1 €
[0, TIxR* =U where U is a fixed compact convex
each 0<t'< T, u(?) is uniformly Hélder continuous with

(175D
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exponent 0<g<1 and uniformly Lipschitz continuous
in x on t'€ [0, T] such that

C, |-t

[ ut, x) — wt, )| <
< G, |x'x|,

[ seft, x) — wit, x')

for some positive constants C; and C, for all «,

'ER™ ¢ t'E [0, T).
Let & be a separable Hilbert space. For €10,
T], nER",

2) At n)is a family of random variable n, such
that Aftn, is Borel measurable.

3) |Att, nJl + Bt + | G, nJ) + |Ctt, )l + | DG,
nJ| K<,

4) The nonanticipative functional A{t, n) &
satisfies theroem 2-1 in given the limitation.

5) w, is an H -valued Wiener process with the
usual properties.

6) E[x3] < =, x, is independent of w..
Let

L, 2(8), w()) =24 OQU, x())x:(5) +u* (DR,
%208))u ()

where * denotes the transpose of the given matrix
or vectors, and then

7) @, nJ is nonnegative definite matrices, and
R, nJ is uniformly positive definite, i.e., elements
of its inverse are uniformly bounded measurable
function.

8) The control u(t) € U satisfies

STEN w@y 1] @t < o,

and are such that (2-1) has a unique solution.

Let s € [0, T] be the initial time; X, = %, the initial
state, #(t) €U, and (%), the corresponding response of

the system (2-1). The conditional remaining cost on the
time s=o0 is defined by

W, 51, %) = ELI3 L mif),ult), db | = %,y %3, =
xlg]v (2'3)

as the expected cost corresponding to the control u(?)
and initiat x,, and x, . Here, T is fixed terminal time.
The problem is to minimize Ji#) on U.

Let



G 1)G*(, 1) G, 9)D*(, 71)
(s, ”‘)A[D(t, ﬂi)G*(t, nf) DG, %D*(t, v:)]

and assume that a(4,7:) is uniformly positive
definite over ¢<[0,T], 7:€R™, i.e.,

n+m
ZJ:_ a; (690 yy =Kl yy*l, K>0,

for all ysR#™,

This essentially states that noise enters every compo-
nent of (3-1), whatever the coordinate system.
Define

Vity) = inf Vgt y),

where Vi(t, 3) = W(s, 2.0, 000, 9= 583 | (1 9)€[0.T]
X Rt ‘

From the assumptions it follows that®
Vs +A%(s)V+L(s, y, u(s, y)) >0,
where

1 n+m

62 n
% = L g————
AV =~ P 5505 V+,-Z=:1(A(S’ 7s0¢

+BGs, m)us),.g’y—, +37 (Clsm),
£ gent

2

” n
Ty V, 5,&R™, £€R?,

and
A%
Vo2t

The above equaility holds if #(%) = #° (5,3, where u°(s,y)
is an optimal feedback control law. this leads to the con-
tinuous time dynamic programming equation:

V. + M0 4u) V + L syu) =0, (3-4)
VT, »)=0

Theorem 3.1

Assume that the value function V satisfying the
stochastic Bellman equation (3-4) exists and is differen-
tiable in (# ). If a control u? € U satisfies

AC® V + LEyuety) < AWV + L tyulty)), 3-5

for all w,=u® € U, ¢y €[0, T| x R* x R", then #}
is an optimal control.

Theorem 3.2
The optimal # ¢ € [0, T), exists and is given by

(176D
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#0= —R™1(t, x,(0) B*t, 1) [ At %:(D) 10, (8)
+ %Az(ty PRGN

If there exist the nonnegative definite symmetric
matrices A, and 4, satisfying the following nonlinear
partial differential equation, (3-7)

A+ A¥A +AA+Q—ABR™B¥A,

02

C .
+ R GIAO N

a 1
*_ A +— *
FPG) A 5 tr(DD
=0,
a

—ABR™B* * .
Ay+A,A—ABR™'B*A +C FTRG)

Az

1 .3
R A Py e P T als

3 Yaso
+2(GD T ) B0

AT, %,(TH)=0, AT, xZ(T)) =0, x,(OER™,

where the argument (¢, x,()) is omitted for brevity.
The solution A:(¢, 7:) and A,(¢, ,) to the above Cauchy
problem can be shown to nonnegative definite and
uniformly bounded for all (¢, &) € {0, T] x R™.

Mohler depeoped stochastic bilinear systems are the
diffusion models for migration of people, biological cell,
etc.,'®, The system equation in (3-1) is a class of coupl-
ed stochastic bilinear equations. In this particular case,
the optimal control of the stochastic bilinear system of
diffusion process (3-1) is given by (3-6). The following
examples belong to class of coupled stochastic bilinear
systems. If A, x.(t)) = 0, G, x.()) = G(?), then the
equation (3-1) is

dx,(t) = B, -) w)dt + G@) dw()), x,(0) € R, (3-8)

where B, -) is composed of unknown coefficients. Such
uncertain parameter may be regarded as additional
state variables. These additional state variables with
uncertain gain may be approximated by

dx,(t) = Ct, xoft)) dt + D) dw(t), x,f0) € R".  (3-9)

If Btt:) = Bt %0, (3-8) is bilinear in x,@) and u(®),
and the system has extended state with R™*™. At this
point the problem of uncertain parameter becomes a
parameter identification problem and the system equa-
tion is a stochastic bilinear differential equation. An air-
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craft landing process'*’ may be represented by this type
of stochastic bilinear equation.

4. Simulation Results

Consider the following stochastic differential
equation

dx() = (3.75 + 1.5 tan™ 2()) dt + u()ds,
dz() = dwt), x(0) = 1.0 (3-10)

where x(t) is observable and w(¥), t €[0,1] is a Wiener
process. The solution to the optimal-control problem
yields a control #°(¢) that minimizes the criterion

Jw) = E[TGwP + w() dt.

According to the results discussed in section 3, the
stochastic control problem in (3-6) has the solution of
the form

w, = At 2(1)) (),
where At &, & € R, satisfies

A1, 8 = 0, t€|0 1]

Figure 1 shows optimal control and suboptimal control
for (3-10) with (3.75 + 1.5 tan™ 2(%)) replaced by

time lsec
Lo >

—  Optimal

- Subopmal

v
»
Optimal control law and suboptimal control for

equation (3-10).

Fig. 1.

Qa7

zit)

E[3.75+ 1.5 tan™ 2(8)]. Figure 2 shows the sample paths
according to optimal control and suboptimal control
in (3-10).

4

40 F

3.0

——  State for optimal

20 b ' State for suboptimal

time sec)

Fig. 2.  Realization of x(t) under optimal and suboptimal

for equation (3-10).
5. Conclusion

The optimal control for a certain linear system with
random coefficients is studied. The stochastic differen-
tial equation (2-1) is described by control systems which
are linear in the observable part of the state variables
and nonlinear, in a very general, functional manner
in random coefficients and control variables.

In the section 2 the existence and uniqueness of a
solution to (2-1) and (2-2) is studied here. Sufficient
conditions for an optimal control are expressed through
the existence of a bounded solution to a certain Cauchy
problem for prabolic type of partial differential equa-
tions. For the quadratic cost function the explicit for-
mulae describing the control law is derived.

Simulation results shown in figure 1 present that the
optimal control law is more complete them the subop-
timal cases with E[3.75 + 1.5 tan™ z(1)].

The proofs of the theorems in the paper are omit-
ted for brevity. '
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