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Abstract

Most of real world systems are highly non-linear. But due to difficulties in analyzing and

dealing with it, only the linear svstem theory is well estabilished. Bilinear system where state

and control are linear but not linear jointly is introduced. Here shows that cptimal state estim-

ation of stachastic bilinear system requirs infinite dimensional filter, thus onesub-optimal esti-

mator for this system is suggested.

1. Structure of Bilinear System (BLS)

Almost of our real world systems have highly
non lirear structures. But because of difficulties in
analyzing and dealing with if, it is general and
standard procedures to linearize it about the opera-
ting steady state or nominal values using Taylor
Series Expansion and to dealing with the resulting
linearized systems. Consider a general non-linear
system described by the state space model.

XW=7(X, U, &), t=(, =) ¢))]
where X=R", U=R", f(.) is n-{unction.

Expaﬁsion of (1) in a Tavlor series about nominal
state, say, Xz and contrcl Ur gives [1].

o/ AdX+ 870 AU+ 5770 4XAU
A=TFH 6 U s axeUBs
+High Order Term 2
If we neglect the high order term,

we have a
system where the state and the contrel are linear
but not linear in the state and control jointly, i.e.
mult iplicative mecde term of state and control appe-
ars. Such a system is commonly calledas a bilinear
system (BLS) and can be described by the following

differential equation form.
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X=AX+CU+B (X, U) [€))
Where A is nxn matrix
C is nxm matrix
B { ) is the bilinear operator

The bilinear term B ( ) can be rewriiten as
B(X, U)=37 BUX 4)
i=1

Where B; is nxn and U; is the i-th component of
input U.
Then BLS (3) becomes

X=AX+33 BUX+CU (5

Standard BLS miodel (3) is an alternziive appro-
ximate linearizaticn of a non-linear system (1).
Thus it enjoys much amount of linear systen pro-
perties since BLS is the nearest form to the linear
system,

X=AX+CU (6)

We can expect that the various advantages of
well estabilished linear system theory can be used
for this system (2].

On the other hand, the non-linear structure offers
some important advantages on the BLS, for examples
controllability, optimalization and modeling etc..

System description by means of BLS can be used
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to model many naturally cccuring physical proces-
ses, for example economics, socio-economics, ecolo-
gies, biology, life science, engineerings and military
applications, etc,. One example of BLS model in the
engineering part is the neutron reactivity control of
nuclear reactor. The neutron population is described
by a second order model.

n=—7 8 n+Ac
c=8/l-n—12 )
where z=neutron population
c=precursor population
u=reactivity, which is control input and
I, A, B contant.

Another application example of BLS meodeling is
in military area. A missile intercept problem or
more generally pursuit-evasion problem can be mo-
deled by biiinear system form. By denoting the
angular rate of the missile and the target with
respect to a non-rotating reference ccordinates as
input U, the dynanics are described by the following
home-geneous-in-the-state BLS.

X=AX+BXU ®

When add linear observation Y<R? to (5), we
have

Y=HX ©))

If the control and observation are corrupted by

some noise, then we obtain an Ito-sense stochastic

BLS (SBLS) equationas as
dX(t)={(A+$Bl-U.-)X+CU]dt+‘Z:}B,-de,-

+Cdw
dY{(t)=HXdt+dv (¢1i))
where A(¢) contains correction term, and Wiener
processes w(f) and v(#) have covariance
E(dw, dwT($)>=Q{t)dt
E(do(t), dv™(#)3=R(@)dt (€%))]
where E( ) represent “expectation” operator and
QeR™", R=R™
Here our problem is to estimate the state X(¢)
of the system by given the cbservation Y ().

2. State Estimation of Stochastic System

Consider again non-linear dynamic system and

non-linear observation

dX(O=Ff(X, Ddt+G(X, Ddw(®), t=>t,
-’Y(fo):Xo (12)
dZ(H)=h(X, t)dt+dv(t) 1z

If the observation is made over the time period
to<t<r, then Yz can be defined as
Yr={z(s), t,<s<t} (13)
The state estimation of (12) based on Yz isequi-
valent to determine the conditional probability den-
sity function P(X, ¢|Yz).
This P(X, t] Yz) can be obtained by the solution
of the Fokker -Planck Type equation.
dP=L(P)dt+ (h(t)~hk)TR (&) {dZ{t)~
hdt} P (14)
Where L( ) denotes Fokker-Planck equation ope-
rator.

% a5
and where
E=ECh(z, t)YO)=fh(X, Op(X, t|YT)dX
(139
Since the solution to the (14) is rarelv available
in general (4}, we are satisfied with only the mean
and covariance of X(#). But it is known that the
mean and covariance are dependent on the higher
order term. It means that optimal estimator has
infinite dimensional which is not practically imple-
mentable. Thus many approximation algorithms are
developed to estimate X(#) by many authors by
the name of suboptimal estimator.
Here intrcduce one algorithm to estimate X{¢) of

SBLS (10) with linear observation.
1) State Estimation of Non-linear System

With the non-linear system eq. (12) without obse-
rvation (12°), the process X(¢) is difined by the
density function P(X, ¢) which satisfy the Fokker-
Planck eq. (14) as we noted before. Mean and vari-

ance eq. of (12) are

XD —pipx, =5, 0 (16)

dP()

dt

P S N P
=XfT—-XfT+ fXT—fXT+GQGT
an
Where ~ denotes the expectation and 7T means

transpose,

(7209)
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On the other hand, with the observation (12,
the conditional mean and variance of X(#) satisfy
the following stochastic differential equation.

dX=fdt+ (XhT— XKV R {dZ—R)dt (18)
AN A A
(dPYi=(X:fi—X:fi +1:X— 1. X;+(GQG");;
(KR AT R-l(i},--za)‘cj)jdﬁ
A\ AN A IN AN -
(X Xih— X Xih— X X;h—X; X0 +-2X,;
Xib)T (R™N(dZ~hdt)) 19

Where X; is the i-th element of X&) £ is the
j-th row of f().

() 4j is the ij-th element of an n x n matrix.

As we mentioned before, mean and variance eq.
(18) and (19) both involve conditional expectation
h(2). This means the optimum of coupled moment
equation to be solved. Which also mean such a {ilter
dimension need infinite dimension to be impleme-
nted. Fortunately for certain class ¢f non-linear
stochastic system with Gaussian observation noise,
the estimator is recursive and finite dimensional(5).

Very special case of non-linear system is linear
system where the system and observation are both
linear and the noises are Gaussian. In this linear
case, Kalman filter algorithm provides a recursive
optimal finite-dimensional estimator as will see in
the following.

Since so good estimators are developed by many
authors, we just mention about the main results of

Kalman filter algorithm.
2) Stochastic Linear System Estimaticn [6]

Consider the linear stochastic system

dXW)=F(HOX@®dt+G(t)dw(t) (20)
with noise currupted linear observation
dZ(H)=H) X{) dt+dv(t) 2L

where w(#) and v(¢) are zero mean white noise
covlw(t), w(r)I=Q() d(t—r)
coviv(?), v(r))=R(#) 6(t—1)

X)), w () and »(?) are independent each other
E(X ) )=X (o), VarlX(t)1=P,

Then the sequential [inear estimator (Kalman

filter) becomes
XO=F®OXO+KOZO—-HOX®)
(22)
Where K{) is Kalman filter gain and quantity
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ZO-H®OX®
is a white noise stochastic process called “the inno-
vation process” containing all of the new informa-
tion in the observation Z(¢).
When K (2) is selected so as to mininize the error
variance i.e. minimize the cost function J(),
J@ =tirlvar{X ()] )=t P(£)) 23
where X()=X{)—X @)
then K () becomes, so called, Kalman filter gain
expressed as
K@#®)=PH'R™ @H
where error variance P(¢) satisfy the following
Riccati type differential equation
P{)=FP~+PF'+GQGT™ PH'R 'HP
P@i)=P, (25)

3) State Estimation of a Stochastic Bilinear
System

(D Existance of the finite dimensional estima-
tor
As far as state estimation of the SBLS problems
are concerned, we can derive 2 more basic {rame-
work on the existance of moments and s‘ructure of
the estimator using the Lie-algebra theory 17, 8.
Consider the next stochastic system and observa-
tion
AL =FL(t)dt+Q"*dw(¢)
dZ(&)=HZ(t)dt+RY*dv(t) (26)
t=(to, £5)
Where w(t),

and ¢ dimersional. {(#) is Gaussian and {(t,), <,

v(¢) are Wiener process with

v are mutual independent. (F, Q%, H) is comple-
tely controllable and completely observable Fair.
LR, ZWO=R* and Q and R are positive
definite,
Here we are interested in estimation of sigral
process {X(#); X{#) =R"} as following,

X@o=[a+ SUBL( X

XO)=1 @n
where A, B,:B, are mxm constant matrix and
X(0) is independent of £(¢,), w(f), v(£).
Then the existance of the finite dimensional esti-
mator problem can be described as following

Theorem 1.

Let a denotes the Lie-algebra generated by

(730)
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and a, is the ideal in a generated by {Bj- - B,).
If a, is a nilpotent Lie-algebra with dimension
7%, then the conditional expectation
XH=EX(®)|Yr) (28
can be estimated with a finite dimensional system
«of bilinear equation driven by the innovation having
‘the form
dX ) =AXWdt+K)duv(@) 29
In particular if A, B+ B, are all strictly upper
‘triangular, then &, and @ are nilpotent Lie-algebra.
If &, is not nilpotent then the optimal estimation
X () is infinite dimensional.
Proof:
Proof of this theorem can be found in (8).
Instead of proving the theorem, several properties
«can be derived as following.
(@ Structure and the properties of the estimator
The least square filtered estimate (28) under the
:above existance assumption can be obtained from
the finite dimensional bilinear stochastic differential
-equation of the following from
axx@=[ A% +35BX £, +350 dU®
X*(t) (30
n'n*—1

where X*(£)eR", m*SM(MZ—i)

E(X;(0)], for i<m
0 , for i>m
X =L@ X*), L is mxm*, A%,
B;*, C* are m*Xm*, and

“where * means the nilpotency dimension, U is mo-
p

Xx0)= {

-dified innovation process.

We see that the optimal filter structure (30) is
27) and 1) It is
bilinear in both drift and diffusion terms and i) It

~comparable to that of the model

.also possesses a nilpotency properties.

This results are analogeous to that of linear fil.
“tering problem in which a linear system model
gives rise to the optimal filter which is also linear
in both the drift and diffusion terms.

® A sub-optimal estimation of SBLS

In this paper we will introduce a sub-optimal
estimator which can be directly derived from the
results of non-linear estimation v hich we discussed
»in section 2.
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Let us rewrite the general form of SBLS (10) as

axa =[(A+il‘B.~U.~)X+CU]dt+iB.de.-
i= =1

+Cdw @D
and non.linear observation
dZ({t)=h(X, O)dt-+dv(®) (32)
The state estimation is completed if conditional
probability density function P(X, ¢!Yr) can be
found satisfying Fokker-planck eq (14). For this

purpose the first two moments, mean and covariance
functions of X(¢) are enough since solution of the
partial differential equation of (14) is rareiy possible
to obtain as indicated. Let us define

Ft)=A+33B:U; (33)
G(t)=%}B,-X+C (34)

then (81) reduces to
AX@W)=(FX+CUdt+3 B, Xdw;+Cdw
i=1

=[FX+CUdt+G(X, )dw (35)
For this system we can apply the same procedures
as the general nonlinear system where mean (18)
and covariance (19) are derived from (12). The

corresponding mean and covariance equation for the
SBLS (35) and observation (32) become

dX @) =(FX+CcUidt+XWT—XIDHR-(dZ
—hdt) (36)

A AN .
dP;j=((FP+PF"+GCGDi— (X;h— X)R
(hX;—hEDI+ (X, Gh— X Xih—X;X:h
PN A A A ~
— X Xih+2X, X;i)TR(dZ —hdt) (37)
Since G(X, #) is linear in X(¢) from (34) GQGT
will only have up to 2nd order in X().

When observation is assumed linear function of
X@®) i.e.
dZ()=HX()dt+dv(t) (3%)
then mean eq (36) reduces to
dX=[FX+CUldt-- PH"R\(dZ—HX)dt
€E2)]
A\
dP;i=(FP+PFT+GQGT™—PHTR 'HP)dt
+Pg.iH'R *(dZ—HX)dt (40)
where Pui=El(X,—X) (Xi—X) (X%,—X))

(731)
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with Pgi= Psii], the 3rd central moment.
[P;uj

Note that optimal filter is dependent on the third
order moment. In general r-th order moment for the
SBLS requirs (»+1)-th order and the lower order
momenis for the optimal estimation. It means that
the optimal estimation for SBLS is not available.
This is why we must rely on the sub-optimal
filter to estimate the state of this system.

One logical approximation to obtain finite dimen-
sional cstimation for this SBLS is to assume that
for some r

Pa()=0 42)

For proper choice of » we can compromise bet-
ween the cemputational complexity and the estimator
requirment. If we choose »=2, then

F3(0)=0 43

Thus the {ollowing second order sub-optimal fil-

ter is derived from (39) and (40).

AR (O =[FX+CUdt+PH 'R (dZ—HXdt)
44

P(t)=FP+PFT+GQG™~PH'R'HP (45)

This is final resultant estimation of the SBLS
given (31) and (38)., Several note can be derived

from this results,

i) Moment eq (43) is no longer stcchastic eq.

It is same type of matrix Riccati equation as
linear Kalman filter (25), but term GQGT and F()
are different here.

ii) Filter eq (44) is the same as Kalman filter
@21, but F() is given by (33) here.

iti) Truncated second order or Gaussion second
order filter are indentical in this approximation.

State estimation problem of BLS or SBLS is dealt
with hyv several authors for examples Lo (9),
Marcas, Ifsu and Willsky (103, Funahashi (117,
Jurdievic & Sussman [12) etc. Many are dealing
with estimation problem hased on the Lie-aigebra
or Lie-group theory.

Parometers identification is ancther topic which
must be dealt with when we cousider state estima-
tion problem. But we will omit here. (133, (11,
(147, (15] are all geod references for this topic.
Specially [16] usad special function (Walsh function)

ERBEIE H30% F115 19815 117

method to identify BLS input, output {unctions.
3. Conclusion

Bilinear system is a simple class of non-linear

system as well as it is the closet to the linear sys.
tem. Many rnatural phencnenon can te modeled by
this BLS, Stochastic BLS isformulated when noise
is considered.
The existance of finite dimensional optimzal estimator
using Lie algehbra is guaranteed when system is
nilpotent. But in most case this condition is not
satisfied. This means infinite dimensions are required
to estimate optimzlly, Thus sub-optimal estimator
is next feasikle chaice.

One sub-optimal estimator 1is introduced in this
paper. The final resultant eq (44), (45) show that
covariance equation is usual Riccati type equation
and filter furction is the same form as Kalman

filter.
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