• Title/Summary/Keyword: steel panel

Search Result 533, Processing Time 0.029 seconds

Life Cycle Analysis of Greenhouse Gas Emissions of By-Product Hydrogen Produced from Coke Oven Gas in Steel Mill (제철소 코크스 오븐 가스 부생수소 전과정 온실가스 배출량 분석)

  • YEIM LEE;WOOJAE SHIN;YEJIN YU;HANHO SONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.636-642
    • /
    • 2022
  • The "Hydrogen Economic Activation Road map" was announced in 2019, and hydrogen demand is expected to exceed 470,000 tons per year in 2022 and keep increasing. Under this circumstance, it has become important to understand the greenhouse gas (GHG) emissions associated with various hydrogen production pathways. In this study, the evaluation of life cycle GHG emissions regarding the hydrogen produced as by-product from coke oven gas (COG) in steel mill is conducted. To cover the possible range of operations, three literatures were reviewed and their data of inputs and outputs for the process were adopted for calculation. Life cycle inventories and emission factors were mostly referred to GaBi and Intergovernmental Panel on Climate Change (IPCC) guidelines, respectively. When there are multiple products from a single process, the energy allocation method was applied. Based on these sources and the assumptions, the life cycle emission values of COG-based hydrogen were found to be 3.8 to 4.7 kg/CO2-eq./kg-H2.

Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load (횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.235-245
    • /
    • 2007
  • Stiffened steel plates are basic structural members on the deck and bottom structure in ship, offshore. It has a number of one sided stiffeners in either one or both directions, the latter structure was called grillage structure. At the ship structural desgn stage, one of the major consideration is evaluation for ultimate strength of the hull girder. In general, it is accepted that hull girder strength can be represented by the local strength of the longitudinal stiffened panel. In case of considering hogging condition in a stormy sea, stiffened panel was acting on the bottom structure under axial compressive load induced hull girder bending moment, also simultaneously arising local bending moment induced lateral pressure load. In this paper, results of the structural analysis have been compared with another detailed FEA program and prediction from design guideline and a series analysis was conducted consideration of changing parameters for instance, analysis range, cross-section of stiffener, web height and amplitude of lateral pressure load subjected to combined load (axial compression and lateral pressure load). It has been found that finite element modeling is capable of predicting the behaviour and ultimate load capacity of a simply supported stiffened plate subjected to combined load of axial compression and lateral pressure load It is expected that these results will be used to examine the effect of interaction between lateral pressure and axial loads for the ultimate load-carrying capacity based on the Ultimate Limit State design guideline.

A Study on Integrated Control and Safety Management Systems for LNG Membrane Storage Tank (멤브레인식 LNG 저장탱크용 통합제어안전관리시스템에 대한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, the integrated control and safety management system for a super-large LNG membrane storage tank has been presented based on the investigation and analysis of measuring equipments and safety analysis system for a conventional LNG membrane storage tank. The integrated control and safety management system, which may increase a safety and efficiency of a super-large LNG membrane storage tank, added additional pressure gauges and new displacement/force sensors at the steel anchor between an inner tank and a prestressed concrete structure. The displacement and force sensors may provide clues of a membrane panel failure and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on the membrane panel fracture even though LNG is leaked until the leak detector, which is placed at the insulation area behind an inner tank, send a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from measurement systems such as displacement and force of a membrane panel safety, LNG level and density, cool-down process, leakage, and pressure controls.

Development and Performance Test Results of a Segmented Scissors Type Switch for the Urban Maglev (도시형 자기부상열차 시저스분기기 개발현황과 성능시험결과)

  • Lee, Jong-Min;Park, Doh-Young;Han, Hyung-Suk;Kim, Chang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3180-3186
    • /
    • 2011
  • A segmented scissors type switch has been developed for the urban transit maglev demonstration line to be commercialized near Incheon International Airport in 2013. Based on the design of the previous segmented 3-way switch, the scissors switch is composed of four segmented 2-way switches up/down and left/right and a turn table in the mid point. The main function of the scissors switch is to change the running direction of the train at end terminals. The developed scissors switch is planned to be installed in front of the 102 station, which has a side platform, of the demonstration line. The total length of the switch is 65m and the distance between the up and down track centerlines is 6m. The 2-way switches and turn table are made of steel box type beams, and have their own driving unit, locking unit, control unit, levitation and propulsion rails, and so on. Installed in the factory, a 100,000-cycle continuous operation test was carried out after manual and automatic test operations. The applicapability of the developed switch was verified through the measurements of the linearity of the track after repetitive operations, the mechanical operation noise, the load of the main driving motor, the safety of the control panel, the natural frequency of the girder, the deformation of the girder, and so on.

  • PDF

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal (평면이방성 박판성형공정의 3차원 유한요소해석)

  • 이승열;금영탁;박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door (차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구)

  • Kim, Jae Yeol;Choi, Soon Ho
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).

Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant (원전 금속단열재의 구조 건전성 강화를 위한 설계 방안)

  • Lee, Sung Myung;Eo, Min Hun;Kim, Seung Hyun;Jang, Kye Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

Deterioration Character of tunnel damaged by fire and Fire Proofing Measure (화재에 의한 터널 열화특성 및 내화대책 기술)

  • Seo, Kang-Chun;Yoon, Tae-Gook;Park, Si-Hyun;Cho, Sung-Han;Kim, Eun-Chong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.129-139
    • /
    • 2005
  • In this paper, the behaviors of tunnel damaged by fire, the diagnostic techniques for evaluating tunnel stability are presented. Also two fireproof construction methods are recommended. Three tunnels damaged by fire were analyzed to evaluate the structural stability. From the these analyzed, it is recommended that surface checking, rebound number of concrete by Schmidt Hammer, and carbonation of concrete are essential to evaluate the engineering properties of concrete in tunnel structure damaged by fire. On the basis of case studies of tunnel fire collected by ITA, the change of concrete and steel strengths by fire are explained, and numerical analysis, which was performed on culvert and circle tunnel, shows that distribution of temperature in the tunnel is dependant upon tunnel shape. Two fireproof construction methods using panel and punching metal are introduced to protect the tunnel by fire.

  • PDF