• Title/Summary/Keyword: steam distillation-extraction

Search Result 182, Processing Time 0.032 seconds

Comparison of Volatile Compounds from Thymus Magnus Nakai by Three Different Extraction Methods (추출방법에 따른 섬백리향의 휘발성 향기성분 비교)

  • Lee, Sa Eun;Kim, Songmun;Lim, Won Churl;Kang, Ki Choon;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • The purpose of this study was to analyse the volatile components of Thymus magnus Nakai extracted by different extraction methods and reproduce scent close to original plant based on the results. For this purpose, the essential oil of T. magnus was extracted by supercritical fluid extraction (SFE), water and steam distillation (WSD) and simultaneous steam distillation and extraction (SDE) methods. The compositions of the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Consequently, linalool (0.1%) and trans-sabinene hydrate (0.9%) contents in the essential oil extracted by SFE method of $40^{\circ}C$ - 400 bar condition were relatively higher than compositions of the essential oil extracted by different conditions. The contents of borneol (3.82%), terpinen-4-ol (0.3%) and caryophyllene oxide (2.2%) were relatively higher at $50^{\circ}C$ - 400 bar and the contents of ${\beta}$-bisabolene (5.88%), 1-octen-3-ol (0.31%), caryophyllene (2.91%), p-cymene (2.04%) and ${\gamma}$-terpinene (0.52%) were extracted relatively higher at $50^{\circ}C$ - 300 bar. The compositions of the essential oil extracted by SFE method of $50^{\circ}C$ - 200 bar condition contained relatively higher contents of thymol (77.63%) and carvacrol (5.65%). The contents of ${\alpha}$-bisabolol (0.17%), caryophyllene (6.46%), cis-${\alpha}$-bisabolene (1.52%) and ${\beta}$-bisabolene (20.65%) in the essential oil extracted by WSD method were relatively higher than compositions of the essential oil extracted by SFE method, and by SDE method we couldn't obtained essential oil. The results of this study could be utilized to reproduce scent close to original scent of T. magnus.

Qualitative, Quantitative Analysis and Chiral Characterization of the Essential Oils of Juniperus phoenicea L. and Juniperus oxycedrus L.

  • Dahmane, Dahmane;Dahmane, Fahima Abdellatif;Dob, Tahar;Chelghoum, Chaabane
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.97-107
    • /
    • 2020
  • Isolation of oils from leaves of Juniperus phoenicea and Juniperus oxycedrus was obtained by steam distillation extraction method. The compositions of essential oils (EOs) were studied by means of GC-MS and GC-FID, using the internal standard method and relative response factors. Around ninety eight compounds were determined in total, representing 98.25 g/100 g of EO of J. phoenicea and 98.48 g/100 g of EO of J. oxycedrus, respectively. The volatile leaf oils were dominated by the terpenic hydrocarbon fractions (79.87 g/100 g) and (61.27 g/100 g) characterized by high contents of α-pinene (64.6 g/100 g) and (54.0 g/100 g) in J. phoenicea and J. oxycedrus, respectively, as the main component. Also, the enantiomeric distribution of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, linalool, terpinen-4-ol, bornyl acetate, and borneol in both oils is presented for the first time.

Essential Oil Composition of Umbelliferous Herbs (미나리과 허브식물의 향기성분)

  • 홍철운;김명곤;김철생;김남균
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The volatile components of umbelliferous herbs having a characteristic spicy aroma were investigated. The essential oils of herbs were isolated by simultaneous steam distillation and extraction and the volatile components were identified by capillary GC and GC/MS. Forty-nine volatile compounds were identified from the herbs. The major compounds of chervil (Anthricus cerefolium) leaf oil were methyl chavicol, 1-allyl-2,4-dimethoxy benzene, and of coriander (Coriandrum sativum) leaf oil were ${\beta}$-sesquiphellan drene, germacrene B, nerolidol, selinene-4-ol, and of coriander seed oil were linalool, decanal, ${\gamma}$-terpinene, $\rho$-cymene.

  • PDF

GC/MS and HPLC/PDA characterization of essential oils and phenolic compounds from the aerial parts of common rue (Ruta graveolens)

  • Chang-Dae Lee;Hak-Dong Lee;Yunji Lee;Hwan Myung Lee;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.144-152
    • /
    • 2023
  • Two different extraction methods were used to evaluate the medical value of common rue, Ruta graveolens L. (RGL). The results of our 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid assays indicated that the antioxidant activity of RGL essential oil extract obtained through steam distillation was very low, whereas ethanol (EtOH) extracts of RGL showed higher antioxidant activity. RGL essential oil was extracted by steam distillation and characterized by GC/MS analysis. Furthermore, EtOH extracts of RGL were obtained under reflux and analyzed by HPLC/PDA. The GC/MS results indicated that the ketone compounds 2-undecanol acetate, nonyl cyclopropanecarboxylate, and 2-nonanone accounted for more than 70% of the composition of RGL essential oil. The HPLC/PDA analyses indicated that the RGL extracts were rich in phenolic compounds such as protocatechuic acid, rutin, psoralen, xanthotoxin, and bergapten, among which rutin was the most abundant. Collectively, our results demonstrated that RGL contains high levels of phenolic compounds and could thus be commercialized as a valuable plant-derived antioxidant.

Volatile Compounds in Oyster Hydrolysate Produced by Commercial Protease

  • Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.420-426
    • /
    • 1995
  • Volatile compounds in raw oyster and oyster hydrolysate produced with protease were compared by vacuum simultaneous steam distillation-solvent extraction/gas chromatography/mass spectrometry. Sixty-two volatile compounds were detected in both samples. Of these, 57 were positively identified, composed mainly of aldehydes(12), ketones(9), alcohols(14), nitrogen-containing compounds(9), acids(6), terpenes(4), and miscellneous compounds(8). Levels of acids decreased after hydrolysis, whereas several other compounds such as aldehydes, ketones, and nitrogen containing compounds increased. Pyrazines, found in high abundance, were only detected in oyster hydrolysate.

  • PDF

Studies on the volatile compounds of Cnidium officinale (천궁(Cnidium officinale)의 향기성분)

  • 이재곤;권영주;장희진;김옥찬;박준영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 1994
  • The volatile components were extracted from root of Cnidium officinale M. by SDE(Simultaneous steam distillation and extraction) apparatus and analyzed by GC/M.5 and GC retention index matching. The experimental results revealed the presence of over 22 volatile components. Major components were cnidilide (35.1%), neocnidilids (13.4%), ligustilide (23.2%). The essential oils were separated by silica gel column chromatography(Merck 70-230mesh), and 4 fractions among 12 fractions separated had a, good aroma character.

  • PDF

Supercritical Fluid Extraction of Volatile Components from Strawberry (딸기의 휘발성 향기성분의 초임계 유체 추출)

  • Lee, Hae-Chang;Seo, Hye-Young;Shin, Dong-Bin;Park, Yong-Kon;Kim, Yoon-Sook;Ji, Joong-Ryong;Choi, Hee-Don
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.615-621
    • /
    • 2009
  • In order to optimize the supercritical fluid extraction (SFE) conditions of volatile components from the strawberry, we conducted an evaluation of the sample preparation and SFE operating conditions. The analysis of the volatile components extracted by a variety of sample preparation protocols led to the identification of 30, 26, 30, and 34 volatile components in fresh, freeze-dried, 30% celite and 70% celite treatments, respectively. The 70% celite treatment was the most effective in extracting the volatile components from strawberry via SFE. Analysis of the volatile components extracted by a variety of SFE operating conditions yielded identifications of 34, 35, 34, and 35 volatile components at 3,000 psi (40, $50^{\circ}C$) and 6,000 psi (40, $50^{\circ}C$), respectively. The extraction yield of alcohols and acids, and the total volatile component contents, were highest under conditions of 3,000 psi and $55^{\circ}C$. Volatile components from the strawberry were extracted via SFE, simultaneous steam distillation and extraction (SDE), and solvent extraction (SE). The analysis of the volatile components extracted via different extraction methods resulted in the identification of 56, 34, and 32 volatile components in the SDE, SFE, and SE extracts, respectively. The total volatile component contents identified in the SDE, SFE, and SE extracts were $20.268{\pm}1.144$, $21.627{\pm}1.215$ and $2.476{\pm}0.177\;mg/kg$, respectively. The SFE extract evidenced higher contents of sweet flavors such as 2-methylbutanoic acid, 2-methylpropanoic acid, and hexanoic acid than the SDE and SE extracts. SFE proved to be the most appropriate method for the extraction of fresh volatile components from the strawberry.

Comparison of Analytical Methods for Volatile Flavor Compounds in Leaf of Perilla frutescens

  • Kim, Kwan-Su;Ryu, Su-Noh;Song, Ji-Sook;Bang, Jin-Ki;Lee, Bong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.154-158
    • /
    • 1999
  • Volatile flavor compounds from perilla leaves were extracted and analyzed with different methods, head-space analysis (HS), simultaneous steam distillation and extraction (SDE) , and solvent extraction (SE), and to compare their efficiencies for quick analysis. Over 30 volatile compounds were isolated and 28 compounds were identified by GC/MSD. Major compound was perillaketone showing the compositions of which were 92% in SDE method, 86% in headspace analysis, and 62% in solvent extraction method. For quick evaluation of leaf flavor in perilla, it was desirable because the headspace analysis method had a shorter analyzing time and smaller sample amount than the other methods.

  • PDF

Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery (바이오에탄올 회수를 위한 에너지 절약형 공비증류공정과 추출증류공정)

  • Kim, Jong Hwan;Lee, Doug Hyung;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.348-355
    • /
    • 2008
  • Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bio-ethanol. In order to illustrate the predictability of proposed process for the separation of bio-ethanol, the experimental data from literatures and real plant data are used. Application of the thermodynamics of multicomponent mixtures and phase equilibria to the extractive distillation process with syntheses of heat exchanger network has enabled the development of energy-saving process for different separating agents. Developed process is capable of minimizing the energy usage and the environmental effect. This extractive process is also able to properly describe the effect of impurities, the choice of separating agent. Simulation results of extractive distillation using ethylene glycol show that impurities do not affect to extractive distillation operation and agent, ethylene glycol, was recycled without any loss. It is possible that extraction distillation has various heat network for anhydride ethanol and recovery of ethanol is maximized. Ethylene glycol as separating agent has a high boiling point to eliminate azeotropic point and on the contrary solubility of agent is low to be almost completed recovered. Proposed process is also the energy efficient process configuration in which 99.85mole% anhydride ethanol can be produced with low energy of 1.37198 (kg steam/kg anhydride ethanol).

Volatile Components of Traditional Gochujang Produced from Small Farms according to Each Cultivation Region (지역별 소규모 농가 생산 전통 고추장의 휘발성 성분에 관한 연구)

  • Hong, Yeo Joo;Son, Seong Hye;Kim, Ha Youn;Hwang, In Guk;Yoo, Seung Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.451-460
    • /
    • 2013
  • The purpose of this study is to investigate the volatile compounds of Korean traditional gochujang from various districts. The volatiles from each traditional gochujang are being extracted by simultaneous steam distillation extraction (SDE), and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Twenty compounds are identified as major volatile components which include 8 esters, 4 alcohols and 4 acids. The most traditional gochujang possesses more volatile components rather than commercial gochujang products. Most acids come from fatty acids and the alcohols derive from the oxidative degradation of linolenic acid. The most abundant volatile compounds for both traditional and commercial gochujang include 10 compounds such as 2-methyl-1-propanol, hexanal, 2-methyl-1-butanol, octanoic acid ethyl ester, as well as the various type of acids and esters. They represent most of the total GC peak areas, respectively. From the results, the characteristics of the flavors for traditional gochujang from each district are not clear but have shown various components than the commercial products.