Supercritical Fluid Extraction of Volatile Components from Strawberry

딸기의 휘발성 향기성분의 초임계 유체 추출

  • Published : 2009.12.31

Abstract

In order to optimize the supercritical fluid extraction (SFE) conditions of volatile components from the strawberry, we conducted an evaluation of the sample preparation and SFE operating conditions. The analysis of the volatile components extracted by a variety of sample preparation protocols led to the identification of 30, 26, 30, and 34 volatile components in fresh, freeze-dried, 30% celite and 70% celite treatments, respectively. The 70% celite treatment was the most effective in extracting the volatile components from strawberry via SFE. Analysis of the volatile components extracted by a variety of SFE operating conditions yielded identifications of 34, 35, 34, and 35 volatile components at 3,000 psi (40, $50^{\circ}C$) and 6,000 psi (40, $50^{\circ}C$), respectively. The extraction yield of alcohols and acids, and the total volatile component contents, were highest under conditions of 3,000 psi and $55^{\circ}C$. Volatile components from the strawberry were extracted via SFE, simultaneous steam distillation and extraction (SDE), and solvent extraction (SE). The analysis of the volatile components extracted via different extraction methods resulted in the identification of 56, 34, and 32 volatile components in the SDE, SFE, and SE extracts, respectively. The total volatile component contents identified in the SDE, SFE, and SE extracts were $20.268{\pm}1.144$, $21.627{\pm}1.215$ and $2.476{\pm}0.177\;mg/kg$, respectively. The SFE extract evidenced higher contents of sweet flavors such as 2-methylbutanoic acid, 2-methylpropanoic acid, and hexanoic acid than the SDE and SE extracts. SFE proved to be the most appropriate method for the extraction of fresh volatile components from the strawberry.

SFE법을 이용하여 딸기의 휘발성 향기성분을 추출하기 위한 시료의 적정 전처리 및 SFE 작동조건을 검토하였으며, SDE법 및 SE법 등의 추출방법과 휘발성 향기성분 조성을 비교하였다. 딸기 생시료, 동결건조시료, 그리고 생시료에 celite를 30, 70%를 혼합하여 제조한 시료를 이용하여 SFE 처리후 향기성분을 분석한 결과, 생시료에 celite를 70% 첨가하는 방법이 향기성분을 추출하는데 가장 효과적인 것으로 나타났다. 온도(40, $55^{\circ}C$)와 압력(3,000, 6,000 psi)을 달리하여 SFE 처리한 결과, 3000 psi, $55^{\circ}C$ 조건에서 alcohol류와 acid류의 추출효율이 증가하였으며, $\gamma$-dodecalactone의 함량도 3배 정도 높은 수준으로 나타났다. SDE법, SFE법 및 SE법 등의 추출방법별 딸기의 휘발성 향기성분을 분석한 결과, SFE법은 SDE법에 비해 추출한 휘발성 향기성분의 종류는 적지만 추출량이 비슷하면서 열분해 및 열변성이 발생하지 않아 딸기 고유의 향기에 가까운 향기패턴을 나타내었으며, 기호적으로 우수한 acid류가 다량 함유된 향기성분을 추출하기에 적합한 것으로 나타났다.

Keywords

References

  1. Reineccius GA. Flavour-isolation techniques. pp. 409-414. In: Flavours and Fragrances: Chemistry, Bioprocessing, and Sustainability. Berger RG (ed). Springer-Verlag, Berlin, Germany (2007)
  2. Yun KS, Hong JH, Choi YH. Characteristics of Elsholtzia splendens extracts on simultaneous steam distillation extraction conditions. Korean J. Food Preserv. 13: 623-628 (2006)
  3. Lee JG, Jang HJ, Kwag JJ, Lee DW. Comparison of the volatile components of Korean ginger (Zingiber officinale Roscoe) by different extraction methods. Korean J. Food Nutr. 13: 66-70 (2000)
  4. Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR. Automation and optimization of solid-phase microextraction. Anal. Chem. 64: 1960-1966 (1992) https://doi.org/10.1021/ac00041a034
  5. Louch D, Motlagh S, Pawliszyn J. Liquid-coated fused silica fibers. Anal. Chem. 64: 1187-1199 (1992) https://doi.org/10.1021/ac00034a020
  6. Choi YH, Kim J, Yoo KP. Selective extraction of ephedrine from Ephedra sinica using mixture of CO2 diethylamine and methanol. Chromatographia 50: 673-679 (1999) https://doi.org/10.1007/BF02497302
  7. Choi YH, Ryu JH, Yoo KP, Chang YS, Kim J. Supercritical carbon dioxide extraction of podophyllotoxin from Dysosma pleinatha roots. Planta Med. 64: 482-483 (1998) https://doi.org/10.1055/s-2006-957493
  8. Lucien FP, Foster NR. Solubilities of solid mixtures in supercritical carbon dioxide: A review. J. Supercrit. Fluid. 17: 111-134 (2000) https://doi.org/10.1016/S0896-8446(99)00048-0
  9. Hubert P, Vitzthum OG. Fluid extraction of hop, spices, and tobacco with supercritical gases. Angew. Chem. Int. Edit. 17: 710-715 (1978) https://doi.org/10.1002/anie.197807101
  10. Lee JM, Kim SK, Lee GD. Monitoring on alcohol fermentation characteristics of strawberry. J. Korean Soc. Food Sci. Nutr. 32: 679-683 (2003) https://doi.org/10.3746/jkfn.2003.32.5.679
  11. Bartley J, Foley P. Supercritical fluid extraction of Australiangrown ginger (Zingiber officinale). J. Sci. Food. Agr. 66: 365-371 (1994) https://doi.org/10.1002/jsfa.2740660314
  12. Schultz TH, Flath RA, Mon TR, Eggling SB, Teranishi R. Isolation of volatile components from a model system. J. Agr. Food Chem. 25: 446-449 (1977) https://doi.org/10.1021/jf60211a038
  13. Shashirekha MN, Baskaran R, Rao LJ, Vijayalakshmi MR, Rajarathnam S. Influence of processing conditions on flavour compounds of custard apple (Annona squamosa L.). LWT. -Food Sci. Technol. 41: 236-243 (2008) https://doi.org/10.1016/j.lwt.2007.03.005
  14. Pyysalo T, Suihko M, Honaknen E. Odour thresholds of the major volatiles identified in cloudberry (Rubus chamaemous L.) and arctic bramble (Rubus articus L.). LWT. -Food Sci. Technol. 10: 36-40 (1977)
  15. Schreier P. Quantitative composition of volatile constituents in cultivated strawberries Fragaria auanana CV., Senga sengana, Senga litessa, and Senga gourmella. J. Sci. Food Agr. 31: 487-492 (1980) https://doi.org/10.1002/jsfa.2740310511
  16. Drinck P, De Pooter HL, Willaert GA, Schamp NM. Flavor quality of cultivated strawberries: The role of the sulfur compounds. J. Agr. Food Chem. 29: 316-321 (1981) https://doi.org/10.1021/jf00104a024
  17. Hirivi T. Mass fragmentographic and sensory analyses in the evaluation of the aroma of some strawberry varieties. LWT. - Food Sci. Technol. 16: 157-164 (1983)
  18. Ho CT, Sheen LY, Wu P, Kuo MC, Hartman TG, Rosen RT. Glycosidically bound aroma compounds in pineapple and peach. pp. 77-80. In: Flavour Science and Technology. Bessiere Y, Thomas AF (eds). Wiley, Chichester, UK (1990)
  19. Lehotay SJ. Supercritical fluid extraction of pesticides in foods. J. Chromatogr. A 785: 289-312 (1997) https://doi.org/10.1016/S0021-9673(97)00461-5
  20. Lehotay SJ, Lee CH. Evaluation of a fibrous cellulose drying agent in supercritical fluid extraction and pressurized liquid extraction of diverse pesticides. J. Chromatogr. A 785: 313-327 (1997) https://doi.org/10.1016/S0021-9673(97)00551-7
  21. Lee BC, Kim JD, Hwang KY, Lee YY. Extraction characteristics of evening primrose oil with supercritical carbon dioxide. J. Korean Inst. Chem. Eng. 27: 522-530 (1989)
  22. Campos LMAS, Michielin EMZ, Danielski L, Ferreira SRS. Experimental data and modeling the supercritical fluid extraction of marigold (Calendula officinalis) oleoresin. J. Supercrit. Fluid. 34: 163-170 (2005) https://doi.org/10.1016/j.supflu.2004.11.010