• Title/Summary/Keyword: stay cable

Search Result 150, Processing Time 0.019 seconds

Vibration Reduction Effects of Stay Cable Due to Friction Damper (마찰댐퍼에 의한 사장 케이블의 진동저감 효과)

  • Kim, Hyung Ku;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Stay cable has a strong axial rigidity due to large initial tension and, on the other hand, it has a weak laterally flexural rigidity. Wind loads or traffic loads cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables of cable-stayed bridge (CSB). Therefore, the development of vibration reduction design is an urgent task to control the vibration vulnerable long-span bridges. As Friction damper (FD) shows to reduce the amplitude and duration time of vibration of cable of CSB from measured date in field test, friction damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable of CSB under traffic load, wind load and so on. Vibration characteristics of cable can change according to manufacturing method and type of established form. Nevertheless, analysis method in this study can present the design of friction damper for vibration reduction of cable of cable-stayed bridge from now on.

Fundamental Frequency Extraction of Stay Cable based on Energy Equation (에너지방정식에 기초한 사장 케이블 기본진동수 추출)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.125-133
    • /
    • 2008
  • According to longer and longer span, dynamic instability of stay cable should be prevented. Dynamic instability occurs mainly symmetric 1st mode and antisymmetric 1st mode in stay cable. Especially symmetric 1st mode has a lot of influence on sag. Therefore fundamental frequency of stay cable is different from that of taut sting. Irvine, Triantafyllou, Ahn etc. analyzed dynamic behavior of taut cable with sag through analytical technical and their researches give important results for large bounds of Irvine parameter. But each research shows mutually different values out of characteristic (cross-over or mode-coupled) point and each solution of frequency equations of all researchers can be very difficultly found because of their very high non-linearity. Presented study focuses on fundamental frequency of stay cable. Generalized mechanical energy with symmetric 1st mode vibration shape satisfied boundary conditions is evolved by Rayleigh-Ritz method. It is possible to give linear analytic solution within characteristic point. Error by this approach shows only below 3% at characteristic point against existing researches. And taut cable don't exceed characteristic point. I.e. high accuracy, easy solving techniques, and a little bit limitations. Therefore presented study can be announced that it is good study ergonomically.

Elimination of environmental temperature effect from the variation of stay cable force based on simple temperature measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Liu, Chun-Yan;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.137-149
    • /
    • 2017
  • Under the interference of the temperature effect, the alternation of cable force due to damages of a cable-stayed bridge could be difficult to distinguish. Considering the convenience and applicability in engineering practice, simple air or cable temperature measurements are adopted in the current study for the exclusion of temperature effect from the variation of cable force. Using the data collected from Ai-Lan Bridge located in central Taiwan, this work applies the ensemble empirical mode decomposition to process the time histories of cable force, air temperature, and cable temperature. It is evidently observed that the cable force and both types of temperature can all be categorized as the daily variation, long-term variation, and high-frequency noise in the order of decreasing weight. Moreover, the correlation analysis conducted for the decomposed variations of all these three quantities undoubtedly indicates that the daily and long-term variations with different time shifts have to be distinguished for accurately evaluating the temperature effect on the variation of cable force. Finally, consistent results in reducing the range of cable force variation after the elimination of temperature effect confirm the validity and stability of the developed method.

Full-scale experimental verification on the vibration control of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Liu, Jiangyun;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1003-1021
    • /
    • 2015
  • MR dampers have been proposed for the control of cable vibration of cable-stayed bridge in recent years due to their high performance and low energy consumption. However, the highly nonlinear feature of MR dampers makes them difficult to be designed with efficient semi-active control algorithms. Simulation study has previously been carried out on the cable-MR damper system using a semi-active control algorithm derived based on the universal design curve of dampers and a bilinear mechanical model of the MR damper. This paper aims to verify the effectiveness of the MR damper for mitigating cable vibration through a full-scale experimental test, using the same semi-active control strategy as in the simulation study. A long stay cable fabricated for a real bridge was set-up with the MR damper installed. The cable was excited under both free and forced vibrations. Different test scenarios were considered where the MR damper was tuned as passive damper with minimum or maximum input current, or the input current of the damper was changed according to the proposed semi-active control algorithm. The effectiveness of the MR damper for controlling the cable vibration was assessed through computing the damping ratio of the cable for free vibration and the root mean square value of acceleration of the cable for forced vibration.

Wind-resistant performance of cable-supported bridges using carbon fiber reinforced polymer cables

  • Zhang, Xin-Jun;Ying, Lei-Dong
    • Wind and Structures
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2007
  • To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are schemed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the dynamic behavior, aerostatic and aerodynamic stability of the two bridges are conducted by 3D nonlinear analysis, and the effect of different cable materials on the wind resistance is discussed. The results show that as CFRP cables are used in cable-supported bridges, (1) structural natural frequencies are all increased, and particularly great increase of the torsional frequency occurs for suspension bridges; (2) under the static wind action, structural deformation is increased, however its aerostatic stability is basically remained the same as that of the case with steel cables; (3) for suspension bridge, its aerodynamic stability is superior to that of the case with steel cables, but for cable-stayed bridge, it is basically the same as that of the case with steel stay cables. Therefore as far as the wind resistance is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.

Development of a full-scale magnetorheological damper model for open-loop cable vibration control

  • Zhang, Ru;Ni, Yi-Qing;Duan, Yuanfeng;Ko, Jan-Ming
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.553-564
    • /
    • 2019
  • Modeling of magnetorheological (MR) dampers for cable vibration control to facilitate the design of even more effective and economical systems is still a challenging task. In this study, a parameter-adaptive three-element model is first established for a full-scale MR damper based on laboratory tests. The parameters of the model are represented by a set of empirical formulae in terms of displacement amplitude, voltage input, and excitation frequency. The model is then incorporated into the governing equation of cable-damper system for investigation of open-loop vibration control of stay cables in a cable-stayed bridge. The concept of optimal voltage/current input achieving the maximum damping for the system is put forward and verified. Multi-mode suboptimal and Single-mode optimal open-loop control method is then developed. Important conclusions are drawn on application issues and unique characteristics of open-loop cable vibration control using MR dampers.

Vibration control of a stay cable with a rotary electromagnetic inertial mass damper

  • Wang, Zhi Hao;Xu, Yan Wei;Gao, Hui;Chen, Zheng Qing;Xu, Kai;Zhao, Shun Bo
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.627-639
    • /
    • 2019
  • Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.

Nonlinear impact of negative stiffness dampers on stay cables

  • Shi, Xiang;Zhu, Songye
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.15-38
    • /
    • 2018
  • Negative stiffness dampers (NSDs) have been proven an efficient solution to vibration control of stay cables. Although previous studies usually assumed a linear negative stiffness behavior of NSDs, many negative stiffness devices produce negative stiffness with nonlinear behavior. This paper systematically evaluates the impact of nonlinearity in negative stiffness on vibration control performance for stay cables. A linearization method based on energy equivalent principle is proposed, and subsequently, the impact of two types of nonlinear stiffness, namely, displacement hardening and softening stiffness, is evaluated. Through the Hilbert transform (HT) of free vibration responses, the effects of nonlinear stiffness of an NSD on the modal frequencies, damping ratios and frequency response functions of a stay cable is also investigated. The HT analysis results validate the accuracy of the linearization method.

Smart Control Techniques for Vibration Suppression of Stay Cable (사장 케이블 제진을 위한 스마트 제진 기법)

  • Jung Hyung-Jo;Park Chul-Min;Cho Sang-Won;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.264-271
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. It has been reported that a semiactive control system using MR dampers could potentially achieve both the better performance compared to a passive control system and the adaptability with few of the detractions. However, a control system including a power supply, a controller and sensors is required to improve the control performance of MR dampers. This complicated control system is not effective to most of large civil structures such as long-span bridges and high-rise buildings. This paper proposes a smart damping system which consists of an MR damper and the electromagnetic induction (EMI) part that is considered as an external power source to the MR damper. The control performance of the proposed damping system has been compared with that of the passive-type control systems employing an MR damper and a linear viscous damper.

  • PDF

Buckling Stability in the deck Steel Girder of Cable stayed Bridge Considered Nonlinear Behavior of Stay Cable (케이블의 비선형 가동효과를 고려한 사장교 강거더의 좌굴 안전성 평가)

  • Choe Hak-Ze
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.129-139
    • /
    • 2005
  • The focused topic according to be slender and longer of cable stayed bridge's main span is as follows (1) Aerodynamic stability (2) Lateral movement of stiffening girder caused by wind force during and after construction (3) Global bucking of stiffening girder caused by axial force Among this, the number 3 has not received much attention in the past due to high buckling safety factor of stiffening girder. However, according to be slender of stiffening girder, the topic of buckling stability of girder is not any more unconcerned subject. The purpose of this paper is to examine the effect of stay cable's nonlinear behavior on the buckling stability of cable-stayed bridge.

  • PDF