Browse > Article
http://dx.doi.org/10.12989/smm.2018.5.1.015

Nonlinear impact of negative stiffness dampers on stay cables  

Shi, Xiang (College of Information and Control Engineering, China University of Petroleum (East China))
Zhu, Songye (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University)
Publication Information
Structural Monitoring and Maintenance / v.5, no.1, 2018 , pp. 15-38 More about this Journal
Abstract
Negative stiffness dampers (NSDs) have been proven an efficient solution to vibration control of stay cables. Although previous studies usually assumed a linear negative stiffness behavior of NSDs, many negative stiffness devices produce negative stiffness with nonlinear behavior. This paper systematically evaluates the impact of nonlinearity in negative stiffness on vibration control performance for stay cables. A linearization method based on energy equivalent principle is proposed, and subsequently, the impact of two types of nonlinear stiffness, namely, displacement hardening and softening stiffness, is evaluated. Through the Hilbert transform (HT) of free vibration responses, the effects of nonlinear stiffness of an NSD on the modal frequencies, damping ratios and frequency response functions of a stay cable is also investigated. The HT analysis results validate the accuracy of the linearization method.
Keywords
nonlinear negative stiffness; stay cable; vibration control; linearization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhou, H.J. and Sun, L.M. (2013), "Damping of stay cable with passive-on magnetorheological dampers: a full-scale test", Int. J. Civil Eng., 11(3), 154-159.
2 Zhou, P. and Li, H. (2016), "Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations", Struct. Control Health Monit., 23(4), 764-782.   DOI
3 Chen, L., Sun, L. and Nagarajaiah, S. (2015), "Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics", Smart Struct. Syst., 15(3), 627-643.   DOI
4 Christenson, R.E., Spencer Jr, B.F. and Johnson, E.A. (2006), "Experimental verification of smart cable damping", J. Eng. Mech., 132(3), 268-278.   DOI
5 Feldman, M. (1994), "Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method'Freevib'", Mech. Syst. Signal Pr., 8(2), 119-127.   DOI
6 Feldman, M. (1997), "Non-linear free vibration identification via the Hilbert transform", J. Sound Vib., 208(3), 475-489.   DOI
7 Feldman, M. (2011), "Hilbert transform in vibration analysis", Mech. Syst. Signal Pr., 25(3), 735-802.   DOI
8 Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng., 134(2), 269-278.   DOI
9 Gabor, D. (1946), "Theory of communication. Part 1: The analysis of information. Electrical Engineers-Part III: Radio and Communication Engineering", J. Institut., 93(26), 429-441.
10 Hahn, S.L. (1996), Hilbert transforms in signal processing. Artech House, 305.
11 Hoang, N. and Fujino, Y. (2009), "Multi-mode control performance of nonlinear dampers in stay cable vibrations", Struct. Control Health Monit., 16(7-8), 860-868.   DOI
12 Kovacs, I. (1982), "Zur frage der seilschwingungen und der seildampfung", Bautechnik, 59(10).
13 Iemura, H. and Pradono, M.H. (2009), "Advances in the development of pseudo-negative-stiffness dampers for seismic response control", Struct. Control Health Monit., 16(7-8), 784-799.   DOI
14 Johnson, E.A., Christenson, R.E. and Spencer Jr, B.F. (2003), "Semiactive damping of cables with sag", Comput.-Aided Civil Infrastruct. E., 18(2), 132-146.   DOI
15 Korpel, A. (1982), "Gabor: frequency, time, and memory", Appl. Opt., 21(20), 3624-3632.   DOI
16 Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772-776.   DOI
17 Krenk, S. and Hogsberg, J.R. (2005), "Damping of cables by a transverse force", J. Eng. Mech., 131(4), 340-348.   DOI
18 Lee, C.M., Goverdovskiy, V.N. and Temnikov, A.I. (2007), "Design of springs with "negative" stiffness to improve vehicle driver vibration isolation", J. Sound Vib., 302(4), 865-874.   DOI
19 Li, H., Liu, M., Ou, J.P. and Guan, X.C. (2005), "Design and analysis of magnetorheological dampers with intelligent control systems for stay cables", Zhongguo Gonglu Xuebao (China J. Highway Transport), 18(4), 37-41.
20 Iemura, H. and Pradono, M.H. (2002), "Passive and semi-active seismic response control of a cable-stayed bridge", J. Struct. Control, 9(3), 189-204.   DOI
21 Li, H., Liu, M. and Ou, J. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monit., 15(2), 120-142.   DOI
22 Lyons, R. (2000), Quadrature signals: complex, but not complicated. URL: http://www.dspguru.com/info/tutor/quadsig.htm.
23 Ni, Y.Q., Chen, Y., Ko, J.M. and Cao, D.Q. (2002), "Neuro-control of cable vibration using semi-active magneto-rheological dampers", Eng. Struct., 24(3), 295-307.   DOI
24 Main, J.A. and Jones, N.P. (2002b), "Free vibrations of taut cable with attached damper. II: Nonlinear damper", J. Eng. Mech., 128(10), 1072-1081.   DOI
25 Mehrabi, A.B. and Tabatabai, H. (1998), "Unified finite difference formulation for free vibration of cables", J. Struct. Eng., 124(11), 1313-1322.   DOI
26 Nayfeh, A.H. (1979), Nonlinear Oscillations, Wiley-Interscience, s.l., 704.
27 Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng., 119(6), 1961-1979.   DOI
28 Pasala, D.T.R., Sarlis, A.A., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C. and Taylor, D. (2013), "Adaptive negative stiffness: new structural modification approach for seismic protection", J. Struct. Eng., 139(7), 1112-1123.   DOI
29 Schreier, P.J. and Scharf, L.L. (2010), Statistical signal processing of complex-valued data: the theory of improper and noncircular signals, Cambridge University Press.
30 Shi, X. and Zhu, S. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002.   DOI
31 Main, J.A. and Jones, N.P. (2002a), "Free vibrations of taut cable with attached damper. I: Linear viscous damper", J. Eng. Mech., 128(10), 1062-1071.   DOI
32 Shi, X., Zhu, S., Li, J.Y. and Spencer Jr, B.F. (2016), "Dynamic behavior of stay cables with passive negative stiffness dampers", Smart Mater. Struct., 25(7), 075044.   DOI
33 Spencer, B. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856.   DOI
34 Shi, X. and Zhu, S. (2017), "Simulation and optimization of magnetic negative stiffness dampers", Sensor. Actuat. A-Phys., 259, 14-33.   DOI
35 Shi, X., Zhu, S. and Spencer Jr, B.F. (2017a), "Experimental study on passive negative stiffness damper for cable vibration mitigation", J. Eng. Mech., 143(9), 04017070.   DOI
36 Shi, X., Zhu, S. and Nagarajaiah, S. (2017b), "Performance comparison between passive negative-stiffness dampers and active control in cable vibration mitigation", J. Bridge Eng., 22(9), 04017054.   DOI
37 Vakman, D.E. (1998), Signals, oscillations, and waves: a modern approach, Artech House Publishers.
38 Vainshtein, L.A. and Vakman, D.E. (1983), Frequency Separation in the Theory of Vibration and Waves.Nauka, Moscow, 288
39 Weber, F. and Boston, C. (2011), "Clipped viscous damping with negative stiffness for semi-active cable damping", Smart Mater. Struct., 20(4), 045007.   DOI
40 Weber, F. and Distl, H. (2015), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution", Smart Mater. Struct., 24(11), 115015.   DOI
41 Wu, W.J. and Cai, C.S. (2006), "Experimental study of magnetorheological dampers and application to cable vibration control", J. Vib. Control, 12(1), 67-82.   DOI
42 Yamaguchi, H. and Fujino, Y. (1998), "Stayed cable dynamics and its vibration control", Bridge Aerod., 235-254.