• 제목/요약/키워드: statistical uncertainties

검색결과 200건 처리시간 0.024초

Fuzzy methodology application for modeling uncertainties in chloride ingress models of RC building structure

  • Do, Jeongyun;Song, Hun;So, Seungyoung;Soh, Yangseob
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.325-343
    • /
    • 2005
  • Chloride ingress is a common cause of deterioration of reinforced concrete located in coastal zone. Modeling the chloride ingress is an important basis for designing reinforced concrete structures and for assessing the reliability of an existing structure. The modeling is also needed for predicting the deterioration of a reinforced structure. The existing deterministic solution for prediction model of corrosion initiation cannot reflect uncertainties which input variables have. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. There are a lot of prediction model for predicting the time of reinforcement corrosion of structures exposed to chloride-induced corrosion environment. In this work, RILEM model formula and Crank's solution of Fick's second law of diffusion is used. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters instead of random variables of probabilistic modeling of Monte Carlo Simulation and the fuzziness of the time to corrosion initiation is determined by the fuzzy arithmetic of interval arithmetic and extension principle. An analysis is implemented by comparing deterministic calculation with fuzzy arithmetic for above two prediction models.

On Transition Procedure Using an Optimal Quantile Estimator under Uncertainty

  • Sok, Yong-U
    • Journal of the military operations research society of Korea
    • /
    • 제23권2호
    • /
    • pp.135-154
    • /
    • 1997
  • This paper deals with the perishable inventory models with uncertainties of demand functions. The traditional perishable inventory costs of holding and stockout are incorporated into the cost function. The average expected cost will be minimized to find the optimal quantile estimator. After three candidate estimators are proposed on the basis of order statistics, they will be evaluated by the simulation results and statistical analysis. Then the transition procedure algorithm using this estimator will be proposed to make the optimal decision under uncertainty.

  • PDF

Generation of Simulated Earthquakes and Time-history Dynamic Analysis of Containment Building (지진 데이터 생성 및 격납건물 시간이력 해석)

  • 배용귀;이성로
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.608-612
    • /
    • 2003
  • In the seismic response analysis, the artificial earthquake time history is generated to do the exact seismic analysis for the complex structural system like as containment building. In the present study the several simulated earthquakes are generated by use of SIMQKE program and the time history dynamic analysis of containment building is performed. Also, the seismic responses are statistically analyzed. The seismic response uncertainty arisen from the simulation of earthquakes is one of major uncertainties and the statistical description is needed to account for the random nature of earthquake.

  • PDF

On nonlinear adaptive control systems independent of the degree of the process

  • Miyasato, Yoshihiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.740-745
    • /
    • 1988
  • New design methods for constructing nonlinear adaptive control system are considered. The proposed adaptive controllers are applicable to the case where the degree of the controlled process is unknown. It is shown that the degree of the controller is determined independently of the degree of the process. Several types of nonlinear functions are introduced to deal with uncertainties of the degree of the process. Finally, some simulation results show the effectiveness and simplicity of the proposed methods.

  • PDF

The Efficient Sensitivity Analysis on Statistical Moments and Probability Constraints in Robust Optimal Design (강건 최적설계에서 통계적 모멘트와 확률 제한조건에 대한 효율적인 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제32권1호
    • /
    • pp.29-34
    • /
    • 2008
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliability-based design optimization are examples of the most famous methodologies. In their formulation, the mean and standard deviation of a performance function and constraints expressed by probability conditions are involved. Therefore, it is essential to effectively and accurately calculate them and, in addition, the sensitivity results are required to obtain when the nonlinear programming is utilized during optimization process. We aim to obtain the new and efficient sensitivity formulation, which is based on integral form, on statistical moments such as the mean and standard deviation, and probability constraints. It does not require the additional functional calculation when statistical moments and failure or satisfaction probabilities are already obtained at a design point. Moreover, some numerical examples have been calculated and compared with the exact solution or the results of Monte Carlo Simulation method. The results seem to be very satisfactory.

A Procedure for Statistical Thermal Margin Analysis Using Response Surface Method and Monte Carlo Technique (반응 표면 및 Monte Carlo 방법을 이용한 통계적 열여유도 분석 방법)

  • Hyun Koon Kim;Young Whan Lee;Tae Woon Kim;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.38-47
    • /
    • 1986
  • A statistical procedure, which uses response surface method and Monte Carlo simulation technique, is proposed for analyzing the thermal margin of light water reactor core. The statistical thermal margin analysis method performs the best.estimate thermal margin evaluation by the probabilistic treatment of uncertainties of input parameters. This methodology is applied to KNU-1 core thermal margin analysis under the steady state nominal operating condition. Also discussed are the comparisons with conventional deterministic method and Improved Thermal Design Procedure of Westinghouse. It is deduced from this study that the response surface method is useful for performing the statistical thermal margin analysis and that thermal margin improvement is assured through this procedure.

  • PDF

A new Bayesian approach to derive Paris' law parameters from S-N curve data

  • Prabhu, Sreehari Ramachandra;Lee, Young-Joo;Park, Yeun Chul
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.361-369
    • /
    • 2019
  • The determination of Paris' law parameters based on crack growth experiments is an important procedure of fatigue life assessment. However, it is a challenging task because it involves various sources of uncertainty. This paper proposes a novel probabilistic method, termed the S-N Paris law (SNPL) method, to quantify the uncertainties underlying the Paris' law parameters, by finding the best estimates of their statistical parameters from the S-N curve data using a Bayesian approach. Through a series of steps, the SNPL method determines the statistical parameters (e.g., mean and standard deviation) of the Paris' law parameters that will maximize the likelihood of observing the given S-N data. Because the SNPL method is based on a Bayesian approach, the prior statistical parameters can be updated when additional S-N test data are available. Thus, information on the Paris' law parameters can be obtained with greater reliability. The proposed method is tested by applying it to S-N curves of 40H steel and 20G steel, and the corresponding analysis results are in good agreement with the experimental observations.

Assessment of Slope Stability With the Uncertainty in Soil Property Characterization (지반성질 불확실성을 고려한 사면안정 해석)

  • 김진만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.123-130
    • /
    • 2003
  • The estimation of key soil properties and subsequent quantitative assessment of the associated uncertainties has always been an important issue in geotechnical engineering. It is well recognized that soil properties vary spatially as a result of depositional and post-depositional processes. The stochastic nature of spatially varying soil properties can be treated as a random field. A practical statistical approach that can be used to systematically model various sources of uncertainty is presented in the context of reliability analysis of slope stability Newly developed expressions for probabilistic characterization of soil properties incorporate sampling and measurement errors, as well as spatial variability and its reduced variance due to spatial averaging. Reliability analyses of the probability of slope failure using the different statistical representations of soil properties show that the incorporation of spatial correlation and conditional simulation leads to significantly lower probability of failure than obtained using simple random variable approach.

  • PDF

Monotone Likelihood Ratio Property of the Poisson Signal with Three Sources of Errors in the Parameter

  • Kim, Joo-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • 제5권2호
    • /
    • pp.503-515
    • /
    • 1998
  • When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector, it follows approximately Poisson distribution. Under the four assumptions in the presence of errors and uncertainties for the Poisson parameters, an exact probability distribution of neutral particles have been derived. The probability distribution for the neutron signals received by a detector averaged over the three sources of errors is expressed as a four-dimensional integral of certain data. Two of the four integrals can be evaluated analytically and thereby the integral is reduced to a two-dimensional integral. The monotone likelihood ratio(MLR) property of the distribution is proved by using the Cauchy mean value theorem for the univariate distribution and multivariate distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem related to the distribution.

  • PDF

Finding Significant Factors to Affect Cost Contingency on Construction Projects Using ANOVA Statistical Method -Focused on Transportation Construction Projects in the US-

  • Lhee, Sang Choon
    • Architectural research
    • /
    • 제16권2호
    • /
    • pp.75-80
    • /
    • 2014
  • Risks, uncertainties, and associated cost overruns are critical problems for construction projects. Cost contingency is an important funding source for these unforeseen events and is included in the base estimate to help perform financially successful projects. In order to predict more accurate contingency, many empirical models using regression analysis and artificial neural network method have been proposed and showed its viability to minimize prediction errors. However, categorical factors on contingency cannot have been treated and thus considered in these empirical models since those models are able to treat only numerical factors. This paper identified potential factors on contingency in transportation construction projects and evaluated categorical factors using the one-way ANOVA statistical method. Among factors including project work type, delivery method type, contract agreement type, bid award type, letting type, and geographical location, two factors of project work type and contract agreement type were found to be statistically important on allocating cost contingency.