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On Transition Procedure Using
an Optimal Quantile Estimator under Uncertainty

Sok, Yong-U"

Abstract

This paper deals with the perishable inventory models with uncertainties of
demand functions. The traditional perishable inventory costs of holding and stockout
are incorporated into the cost function. The average expected cost will be minimized
to find the optimal quantile estimator. After three candidate estimators are proposed
on the basis of order statistics, they will be evaluated by the simulation results and
statistical analysis. Then the transition procedure algorithm using this estimator will

be proposed to make the optimal decision under uncertainty.
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1. Introduction

In this study primarily we are concerned with a perishable inventory model
with uncertainties of demand functions. The classic form of this kind of the model
was described in Morse and Kimball's early operations text[8]. Many manufacturers
or suppliers must decide how many commodities to be prepared from period to
period. Thus, a fixed periodical demand quantity for automobiles or appliances
fluctuate randomly. So does the number of spares or the amount of ammunition to
acquire along with a new system or a mission.

In advance of period’s demand, the manufacturer must produce and stock his
products to meet the customer’s need. If he prepares more products than customers
will purchase from him, he will have products left at the end of the period. Then he
will incur a loss on each, since old products will have little salvage value. On the
other hand, if he prepares too few products, he will sell out early and his later
customers will not be able to buy from him. Thus, he will incur a cost which is
called lost profit for each product that he could have sold, but could’t.

This paper presents the expected cost solutions for the model with either cases
of continuous and discrete random demand. In order to make the optimal decision as
to the inventory level, the inventory holding and stockout costs will be incorporated
into the cost function. This study will consider primarily the problem of minimizing
the expected cost. The study including statistical analysis will be extended to the
more general demand distribution in addition to the simulation study[2]. And then the
study will propose the transition procedure for the model from uncertainty.

In section 2, the expected cost function will be derived and then an optimal
solution for the function will be found for either cases of continuous and discrete
models. Three candidate estimators using order statistics will be proposed and
compared with each other for the optimal inventory decision in section 3. In section
4, after analyzing the input data, those proposed estimators will be evaluated by the
simulation results and then a transition procedure algorithm from uncertainty will be

proposed. Finally, conclusions will be given in the final section.
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2. The Expected Cost Function and the Optimal

Solution

In this section a perishable inventory model i1s examined under uncertainty
conditions. We will first structure the general form of the problem and then show
how optimal solution can be obtained when the estimates of demand distributions are
available. First a cost function will be set up and then a derived expected cost

function will be minimized to find the optimal solution.

2.1 The Expected Cost Function

Consider the perishable inventory model in which the cycle length is fixed and
there is only one opportunity to order. Demand i1s a random variable (RV), X with
probability density function Ax) if continuous and probability mass function p(x) if

discrete. Assume that the relevent costs are holding cost and shortage or stockout

cost only.

Let X be a continuous RV and let the cost of a perishable-goods be C and
the selling price be F, provided that F > C. Any goods are not sold at the end of

the period are sold for scrap at a value of S, provided that C > S. Then the cost

function of Q is defined by the followings ;
(C—-9Q—-X), if 0<X<Q,

Q= {
(P-C)(X-Q), elsewhere .

Hence, the expected total cost is a function of ), which is given by ;

HO@1=(C-9 [ (0~ DfDdet (P~ O [ (x- OADdr.  (2.1D)

where { is the inventory purchased at the beginning of that period. The first of the

right hand side is the expected holding cost and the second term is the expected
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shortage or outage cost. Analogically the expected total cost for the discrete RV, X

is given by the followings ;

HAQ1=(C-9 3(@-060 +(P-O_3, (- Qnn). (219

2.2 The optimal solution for the Expected Cost
Consider the first case where the RV is continuous. To find the optimal solution
of @, @ which minimizes the expected total cost, differntiate the equation (2.1.1)

with respect to &, set the result equal to zero and then solve for & as follows ;

dEL C _ Q * _
—ﬂdJQQll =(C-9) [ Axds— (P~ O J, Axdx=. (2.2.1)

o0 (4]
Since fQ j(x)deI—fO Rx)dx , the following is obtained from (2.2.1) :

j;g.f(x)dxz %}%— . (2.2.2)

Consequently, we have F(Q")= ;;:(S: where € is the optimal quantity of .

Also differentiate the left hand side of the equation (2.2.1) with respect to &,

then the second derivative of E[ C(Q)] evaluated at Q= Q"

a2(a I P
sz Q=Q

is given by ;

(=9 [“Anad o o—1(P- O [ Kol o ¢

l

(P=9AQ) > 0,

because F > S and AQ"), being a density, is always positive. Therefore let b, bth
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quantile, be —%%E%» then Q‘:F"‘(p) which is the optimal{minimum) solution of

the problem.
Let X be a discrete RV, then to find the optimal soluton Q" defined for integer
value of its argument, necessary conditions in terms of the expected total cost

function can be described as the function of Q' as follows ;

EC@Q)] < BlXQ +1)] and EIA(Q)] > EAQ —DI. (2.2.3)

Expanding two inequalities in equation (2.2.3) with the expected cost expression
(2.1.2), and simplifying with the discrete distribution function F{(x) = ;OKQ)

yvields the following two inequalities ;

FQ —1) < p and F(Q) > p.

These two inequalities may be combined to give the following optimal solution ;

Flip) < @ < Fip+1.

3. Proposition and Effect of the Quantile Estimators

If a decision maker is able to predict the form of the demand distributions, then
a parametric approach can be more efficient and have a higher convergence rate to
the true value than a nonparametric equivalent. Various considerations relating to the
choice of the well-fitting demand distributions and about inventory demand
predictions can be given in detail such as suggesting the Poisson distribution when
the lead time is relatively low, or normal distribution when it is not relatively low.

But since it is not easy to specify the form of the demand distributions using
insufficient data, for the early periods, a nonparametric estimation method can be

considered. A nonparametric approach using the empirical distribution function is
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reasonably applicable, unless we are forced to operate the model at the tail of the
distribution.

It 1s assumed that the first 33 periods when the available data is inadequate is
critical. The decision maker operate the svstem well during that critical periods, i.e.,

at transition phase a nonparametric approach can be applied. Three different

estimators of X,,, using an order statistics will be developed in the followings.

3.1 The First Candidate Estimator for the Optimum 7(,)

The first estimator for the optimum inventory level will be proposed as follows ;

Let X1H<{ X <... <Xy be a set of order statistics from an unknown distribution

where

X(,) is the rth largest value, i. e., rth order statistic.

Let 7 be defined by the followings ;

np if ng is an integer

Inp+1] if #p is not an integer

where P is the pth saple quantile, # is the number of periods so far and [2z]
denotes the integeral part of 2{3]. Tor large n, —Xp = X (,» which is a consistent
and unbiased point estimator of Xp. In Figure 1, the #th order statistics, X(,) s
represented graphicallv by the distribution function Fn(X) and the empirical

distribution function Gp(X).
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Figure 1. Cummulative Distribution Function Fp(X) and
Empirical Distribution Function Gp(X)

Known results of this estimator include the followings for a uniform (0,1)

distribution ;

HXpl=EUyl=7/(n+1),
VX )= WU, =Hn—r+1)/(n+1)*(n+2) and

CotlX (), X 9]l = Corl Uiy Ugl=Hn—s+1)/(n+1)*(n+2) for #{s.

Similarly, for any other distrinutions,

ELX ()] =Fp' (7).

__rAn—r+l) B}
WX ) =—L2—r ) e (p i L )32 ang

(n+ 1% (n+2) ntl
__rn—s+1) 1
Col X, X (91=
DY+ 2) f pd L)) S Fo(5))
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provided »<s [7].

Later these results will be used to evaluate the efficiency of the estimator of Xp .

3.2 The Second Candidate Estimator for the Optimum ; X,

As a second estimator of X, Xp is offered to smooth the empirical

distribution function by a linear interpolation. The area between empirical distribution

function GD()() and the actual distribution function FD(X) might be considered to

be a measure of deviation. A new empirical distribution function E can be obtained

by interpolation which was done at the midrange. A possible realization for Xp is

shown in Figure 2.

1.0
p
| :
Gp(X) __—’—/i ’
1 | v ) > X
0.0 X -1 Xn X, Xo+y

Figure 2. The Second Estimator ; X(y)
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The area between E and FD()()) would possibly be smaller than that between

GD(X) and FD()()‘The second estimator can be derived and proposed as follows ;

3.3 The Third Candidate Estimator for the Optimum ; X,

As a third estimator of X,,, a pooled order statistics, combining other order

statistics,

is proposed. The problem is to compare the variance of the rth order statistics. To

examine this subject, it is reasonable to begin with the uniform (0,1) distribution,
since the expectations, variances and etc. of it’s order statistics are simple and exact.

Let Xp be a pooled estimator in the form of a linear combination of the order
statistics, X (,—1), X(» and X (,4). Here the third estimator is of the form as._;

Xy=aX(—n+BX»+1X 4y , where o+ B+y=1.

If demand has a uniform distribution, then the coefficients have to be

a=fB==1/2 and A=0 to minimize the variance of Xp[‘Z}. This implies that a
third reasonable estimator of X, can be proposed as follows ;
X,=1/2[X -+ X 1]l

This is an unbiased estimator since the expectation of X,E[ X,,]Zr/(fﬁ—l),

yielding minimum variance,

_ondm—r+ 1) —(n+1)
M X,1= 2 (n+1)4(n+2)

If the ratio of two proposed estimators, Y,; and X i1s taken, the ratio should
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v .)—(p] _ 2rin—r+1)
v X,] 2in—r+1)—(ntl)

> 1.

always be;

This implies that V[ Yﬁ] > U Xp] and consequently, it can be said that Xp is
better estimator than )_(p in the case of uniform distribution but it is hard to
conclude in general. Hence, a simulatin method will be considered to evaluate the
proposed estimators in the followings. The variances of Yp and x, are drawn for
n=20 in Figure 3. When 7 is close to bounds ( either close to 1 or # ), the

variance difference becomes larger.

Var.#107°
11-

Figure 3. A Plot of Comparative Variances of T(p(Dotted Line) and X,

4 Evaluation of the Proposed Estimators for Transition

The performances of the proposed estimators will be examined for several typical

demand distributions by the simulation method in this section. After explaining the
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reasons for using simulation, input data analysis will be followed. The structure of
the simulation program will be described and then the results of the simulation will
be discussed to evaluate those proposed estimators and to find the transition

procedures using an optimal estimator.

4.1 Rationale for Simulation

The purpose of the study is to find a transition procedure i.e., which estimatorof
Xp to use and when, during the transition from uncertainty. The performance of an
alternative transition procedure depends directly on the performance of the proposed
estimator of Xp applied. A primary reason as for simulation , of course, was to

study the question of how long one should continue using the minimax procedure
under uncertainty before changing to a transition using a quantile estimator.
Additionally, we wish further examine the question of which of the proposed
estimators to use.
In summary, the reasons for the simulation will be given as follows ;
1. To find the proper period to begin the transition by the use of one of the
proposed estimators leaving the uncertainty case and the minimax decision rule.
2. To provide information to supplement incomplete analytical knowledgs of order
statistics regarding population quantiles.
3. To evaluate the impact of the approximations made in developing the optimal
proposed estimator over various demand distributions.
In this simulation, a variety of possible forms of distributions will be considered

for generality. They include a Uniform (0,20) as a standard demand distribution, a

Poisson {A=10) for retail demand distribution, a Normal (35,102) for demand
distribution at factory

level, Triangular(a=0, b=10, ¢=20), Triangular(a=0, b=12, ¢=18) and Triangular(a=0,
b=14, ¢=16)

distributions as left-skewed distributions and right-skewed distributions with long

tails such as Weibull( 1=0, =1, =0.5), Weibull{ L=0, =1, A=1) and Weibull( =0, =1, 4

=2) for some retail and wholesale situations{1] where three parameters are V, which
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is the location ; @(>0), which is the scale ; and A(>0), which is the shape parameter.

4.2 Input Data Analysis for the Simulation

Input data is one of the most important factor in a simulation study. There
should be a great emphasis on procedures that are statistically valid rather than
using the procedures that requires least amount of datal4]. Therefore these input data
should be tested for the validation of the model before using them in the simulation.
In this study, input data include the demand distributions such as Uniform, Normal,
Poisson, Weibull and Triangular distributions mentioned previously. The statistical
goodness of fit test can be useful for testing of the assumed model.

Now consider only input data generated by a Weibulll v =0, @ =1, 5 =05)
distribution. The assumption of Weibull distribution will be tested using these data
by the method of ZZ goodness of fit test. The other cases can be easily proved
since they are quite simple cases.

Suppose an arbitrary random sample of size 50, X;, X3, - - - ,Xs , that are

spanned by the generator of Weibull random variates as follows [5];
)(l-l‘—a'[—ln(l—Rl-)]l/"{j , where R, is from Uniform(0,1).

A data set of Weibull random variates will be given in Appendix A-1. These

observations are assumed to come from the Weibull distribution with pdf given by ;

Rx)=(Bla)x/a)* texpl — (x/a)*"], x>0.

From this, the likelihood function can be shown as follows ;
n . i
Lie, = ZI e VYexpl - 3% )T

To find the maximum likelihood estimates of @ and f , after taking the partial

derivatives with respect to @ and S and setting each zero, we will solve the

following nonlinear equation as ;

AB =2+ Dinx;— (nZeflnx)/(Txh) =0 . Then we have a=(L Tx) ()

n
A numerical analytic technique is necessary to find an approximate numerical solution

in the above nonlinear equation. The Newton Raphson method will be applied as
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follows ;

Igjzﬂj—l_ﬂﬂj—1)/f'(ﬂj_1) with ﬁg———% and sttoping condition,
LAB)L < &= 0.001 .

For these data, n=50, jX_ = 1.908, s = 3.513, so that A = 0.543 . After four iterations,

By = 0510 = 05 and @ - 1.012 = 1.0 are the approximate solutions. Table 1

contains the needed values to complete each iteration that is executed by the
numerical method which is written in FORTRAN . The detailed computer program

can be accessed from the author.

Table 1. Iterative Estimation of Parameters for the Data

7 B; RB)) (B Biv1
0 543 -9.673 -282.718 509
1 509 .489 312.121 510
2 510 001 -310.662 510
3 510 .000 ~-310.559 510

Now the hypothesis to be tested are as follows ;
H, : X; is Weibull ( L = 0, @ =1, A = .5) distributed versus Hy : not Hy .

To test the data as Weibull distributed, let k=8 class intervals, so that each interval

will have the equal probability, say, p~.125. The endpoints of the class intervals,

denoted by a; can be found by a; = @ [-In(l1-ip)] for i=1, -+ 7. They are given as
follows ; .018, .083, .221, 480, .962, 1.922, and 4.324. The first interval is [0, .018)

where the observation frequency(QOi) is 6 and expected frequency(Ei) is 6.25, so that
the contribution to the ;{2 statistic value, (O+~E)* /Ei , is .0l. The x2 statistic value

is .24. Since the test statistic is less than ;(%05 - 111 , Hj can not be rejected.

Therefore, it can be concluded that the Weibull assumption is valid and the Weibull

generator can be used to generate the Weibull input data for the simulation.
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4.3 Discussion of the Simulation Results

In every simulation run, inventory stocking decisions are made successively
using one particular demand distribution and one particular value of the quantile,
p=(P—QCO)/(P—S), say, demand generated from a normal parent quantiles for
quantile 0.1,--- etc. Each run consisted of 33 successive decision periods starting with
no demand information other than the range estimate, and replicated 50 times. The
computer simulation package can be accessed from the author. In this thesis, the
algorithm for the simulation program can be only described in the following ways ;
1). Define a demand distribution having maximum demand and the quantile £ given

by (P—O)/(P—S) where F is the selling price, C is the cost of goods and

S is the scrap value.
2). Compute the minimax cost for the case of uncertainty and ideal cost for the case
of risk.

3). Generate a random dernand variates from the specified distributions.

4). Find the single-period cost according to each of estimators such as Minimax,

Ideali, 7(# Xﬂ and Xp by comparing their inventory levels with the demand
generated for this period. Record the cost.
5). Repeat step 3) and 4) for 33 periodss.
6). Again beginning from the first period, repeat step 5) for 50 replications and at the
end of 50 replications find the expected cost.
7). Compute the average expected cost and then tabulate the results.
The simulation results will be given and evaluated in the followings. The
quantile value will be identified by p in presenting these simulation results. Table 2

in Appendix A-2 shows that the average expected cost with the normalization cost
given by (R—ID)/ID in the paranthesis where R means a proposed estimator cost

and ID is ideal case cost. As a special case, if we pursue the Uniform demand
distribution in Table 2, the minimax cost and Ideal cost would match each other

because the ideal solution is always same as the minimax cost solution given by

[(P-O)/(P—S)ID,.x whenever the maximum demand Dy, is determined
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exactly.

For a distribution from Table 2, the normalization costs over all quantile p will
be calculated for every KR, where R, is ——R jé, or R. Repeat this procedure for

every distribution and then they will be tabulated in Table 3. Table 3 shows the

mean normalization costs and its confidence intervals for every distribution.

Table 3. Mean Normalization Costs and Confidence Intervals

Est.\ Dist. Uniform Normal Weibull Triangular Poisson Overall

R .1161(.0343,.1979).1073(.0284,.1863). 0518(.0232,.0803). 1304(.0411,.2198). 0836(.0162,.1509) .4892
ﬁ .1201€.0941,.1461).0966(.0670,.1261) .0674(.0264,.1085) .1244(.1072,.1417) .0746(.0370,.0901) .4831

R .1058(.0712,.1403).0982(.0708..1256) .0416(.0134,.0697) .1224(.0922,.1527) .0636(.0370,.0901) .4316

A statistical test for the null hypothesis Ho : R, = 0 for all 17 ie., there is no
difference among those proposed estimators, should be performed at first. For the
data in Table 3, proc anova for two-way factorial design is carried out. Since the
null hypothesis is rejected under @ = 0.05 (p value = 0.0467) as being shown in
Table 4, it can be concluded that there is significant difference among those

estimators. Futhermore, in the case of distribution factor there should be significant

difference as to the distribution form.

Table 4. ANOVA Table for the Normalization Data

Factor DF Anova SS Mean Square F Value pr > F
Estimator 2 0.00040048 0.00020024 4.60 0.0467
Distribution 4 0.01045770 0.00261442 60.10 0.0001
Error 8 0.00034801 0.00004350
Total 14 0.01120619

On the bais of the simulation results and the statistical analysis, the relatively
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favorable transition procedure is to apply ﬁ for Normal and K for Uniform, Weibull,
Triangular and Poisson distributions as being shown in Table 3. The mean

normalization costs and confidence intervals using the proposed estimators shown in

Figure 4 was plotted by the proc plot of SAS.

Referring to the Table 3 and Figure 4, the third estimator, R= Xp give the
minimum normalization cost solution which corresponds to the minimum expected
cost solution and also the confidence interval of this estimator is less than that of
any other estimator in most cases of considered distributions. Therefore, the
estimator, Xp is recommended as the best(optimal) estimator. Also it has been

shown that the optimal transition period is the seventh period for overall quantiles in

a previous study[2].

95%CLM Legends ; ’#'= Mean Normalization value,

| "A’= Upper Confidence Limit,

0.2 + A "V'= Lower Confidence Limit.
| A A
| A
j A A A A
| A A * * * * x
0.1 +s * = A A \% Y vV = A
| \% * * v A
| \% * * * A
} v % v Y =
v \ Vv \ vV
0.0 +=—=—dmm o e e i +-> EST.

N-1 N-2 N-3 P-1P-2P-3 T-1T-2T-3 U-1U-2U-3 W-1 W-2 W-3

Figure 4. Plot of Mean and Confidence Intervals Using the Proposed Estimators
Where N-1 stands for Applying R to Normal and P 2 stands for

applving R to Poisson and W 3 stands for applying R to Weibull

Distribution, etc.
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To see the effect on the very right tail of a distribution on transition procedure,

$=0.95 can be used for all distributions. At this quantile, the Minimax cost is
below ﬁ, fe and R costs except the Poisson distribution. Hence a transition

procedure algorithm wusing the optimal estimator, Xp can be proposed in the

following ways ;

a). Approximate the range of a specified demand distribution.
b). Set p=(P—C)/(P-S).
c). If p=0.95 go to step e), otherwise go to step d).

d). Apply the Minimax for the first 6 periods, otherwise apply K for periods
such that 7 < n < 33, and go to step f).

e). Apply the Mimimax for all periods.
f). Analyze data i. e, may fit a probability distribution for the data and

begin to make a decision under risk.

5. Conclusions

For the perishable inventory model, a nonparametric decision procedure that
allows transition from uncertainty has been developed. Three candidate estimators
using the order statistics were proposed and applied to the model for finding the
minimum expected cost solutions. Testing these estimators for several cases which

represents the demand distributions in general, it was found that excluding cases
such as the very tail quantiles, the pooled estimator, R= X,, provided essentially
the better estimates than any other estimators over quntiles, p = 0.1,0.2,---, 0.9 even
though ?é and ﬁ worked well. Especially, at the very right tail quantiles such that

$=0.95, the Minimax estimator gives better solutions than any other estimators.
Since one of the most important factor in a study using the simulation method
is an analysis of the input data, statistical tests should establish the basis for any

generation of random variates concerning the assumption of a demand distribution
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before simulation. Consequently the distributional assumption with the associated
parameter estimates were tested to be valid by xz goodness of fit test.
The statistical test using ANOVA asserts the fact that there is significant

difference among the estimators under the significance level, @ = 0.05. To find the
optimal estimator, the minimum expected cost, its normalization cost to the ideal cost
and confidence interval for the mean normalization cost were considered as

performance measures for evaluating the proposed estimators. On the basis of the

evaluation results, the estimator R is recommended as the optimal estimator. Also a
transition procedure algorithm for the perishable inventory model has been finally
proposed to make the optimal decision from uncertainty.

For further study, some work can be afforded to improve the nonparametric

approaches and expected to cover all possble kinds of demand distributions.
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Appendix A-1. A Data set of Weibulll v=0,a2=1,8=0.5) Random Variates.

379 6.342 227 3.331 126 2.016 060 1.281 022 .826
003 528  13.949 328 5.012 193 2.846 103 1757 047
1.125 014 125 001 460 9.251 282 4.215 162 2451
.083 1.536 035 988 009 635 .0001 400 6.949 241
3.543 135 2.124 066  1.346 025 867 005 555 17.684

Appendix A-2. Table 2 ; Average Expected Costs and Their Normalization Costs

to the Ideal Cost, (R"— ID)/ID, over 33 Periods and 50 Replications, where p
is Quantile, M= Minimax, R= —Xp, R= Xﬁ, R= X,, and ID = ldeal Cost.
b M D R R R

* Uniform(0, 20) Distribution ;

0.1 3.581(.000) 3.581(.000) 3.963(.107) 4.0150121) 3.911(.092)
0.2 6.334(.000) 6.334(.000) 6.782(.071) 6.883(.087) 6.769(.069)
0.3 8.335(.000) 8.335(.000) 8.866(.064) 9.125(.095) 9.060(.087)
04 9.771(.000) 9.771(.000) 10.342(.058) 10.694(.094) 10.462(.071)
0.5 10.225(.000) 10.225(.000) 10.747(.051) 11.177¢.093) 10.967(.073)
0.6 9.449(.000) 9.449(.000) 10.331€.091) 10.624(.124) 10.551€.117)
0.7 8.441(.000) 8.441(.000) 9.007(.067) 9.443(.119) 9.175(.087)
0.8 6.289(.000) 6.289(.000) 7.218(.148) 7.327(.165) 7.653(.201)
09 3.609¢(.000) 3.609(.000) 5.009(.388) 4.269(.183) 4.167(.155)

* Normal(35, 10%) Distribution :

01 11.900(.694) 7.024(.000) 7.969(.135) 8.026(.143) 8.143(.159)
0.2 19.073(.562) 12.214(.000) 12.705(.040) 12.745¢.043) 12.927(.058)
0.3 22.768(.637) 13.9110.000) 14.7910.063) 15.2320.095) 15.129(.088)
0.4 22.344(.409) 15.863(.000) 16.485(.039) 16.701¢.053) 16.925(.067)
0.5 19.601(.285) 15.250(.000) 16.231(.064) 16.630¢.090) 16.571(.087)
0.6 17.577(.073) 16.375(.000) 16.971(.036) 17.505(.069) 17.609(.075)
0.7 13.922(.023) 13.609(.000) 14,761(.185) 15.059(.107) 15.047(.106)
0.8 11.047(.046) 11.576(.000) 12.250(.058) 12.856(.111) 12.630(.091)
09 7.180(.009) 7.117(.000) 3.580(.346) 8.244(.158) 8.205(.153)

+ Weibull( L-0, @=1, = 05) Distribution :

0.1 1.073(.299) B826(.000) .853(.032) 852(.032) 843(.021)
0.2 2.036(.358) 1.499(.000) 1.546¢.032) 1.549(.034) 1.517(.012)
0.3 2.977(.248) 2.385(.000) 2.445(.025) 2.461(.031) 2.4200.015)
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0.4 3.961(.169) 3.387(.000) 3.461(.022) 3.489¢.030) 3.439(.015)
0.5 4.012(.134) 3.538(.000) 3.655(.033) 3.713(.050) 3.653(.033)
0.6 4.274(.084) 3.944(.000) 4.089(.037) 4.165(.056) 4.085(.036)
0.7 4.639(.031) 4.501(.000) 4.782(.062) 4.819(.071) 4.671(.038)
0.8 4.669(.003) 4.657(.000) 5.080(.091) 5.180(.112) 5.051(.085)
0.9 4.340(.083) 3.990(.000) 4.515(.132) 4.751(.191) 4.465(.119)
* Triangular( a=0, b= 12, ¢=18) Distribution ;
0.1 3.306(.195) 2.766(.000) 3.056(.114) 3.1170.137) 3.096(.129)
0.2 5.280(.162) 4..546(.000) 4.867(.085) 4.944(.102) 4.965(.107)
0.3 6.496(.184) 5.486(.000) 5.778(.078) 5.962(.113) 5.990(.118)
0.4 6.943(.119) 6.206(.000) 6.433(.072) 6.664(.110) 6.573(.090)
0.5 6.589(.048) 6.290¢.000) 6.388(.058) 6.609(.094) 6.539(.083)
0.6 5.752(.011) 5.690(.000) 5.963(.106) 6.115(.134) 6.126(.136)
0.7 5.108(.008) 5.067(.000) 5.017(.073) 5.233(.119) 5.115(.094)
038 3.999(.035) 3.864(.000) 3.895(.158) 3.903(.160) 4.083(.214)
0.9 2.579(.106) 2.332(.000) 2.766(.430) 2.225(.151) 2.187(.131)
* Poisson{ A = 10 ) Distribution ;
0.1 3.094(.415) 2.186(.000) 2.321€.062) 2.340(.070) 2.376(.087)
0.2 4.556(.097) 4.148(.000) 3.628(.125) 3.737(.099) 3.739(.099)
0.3 4.833(.062) 4.553(.000) 4.575(.005) 4.702¢.033) 4..698(.032)
04 4.773(.161) 5.689(.000) 5.005(.120) 5.150(.095) 5.119(.100)
0.5 5.333(.040) 5.131(.000) 5.403(.053) 5.472(.067) 5.465(.065)
06 6.321¢.120) 5.645(.000) 5.409(.042) 5.700(.010) 5.593(.009)
0.7 6.798(.504) 4.518(.000) 4.758(.053) 5.085(.126) 4.877(.080)
0.8 6.252(.480) 4.223(.000) 4.205(.004) 4.375(.036) 4.307(.020)
09 3.975(.578) 2.519(.000) 3.244(.288) 2.860(.13b) 2.721(.080)
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