• Title/Summary/Keyword: statistical process control chart

Search Result 168, Processing Time 0.029 seconds

An $\overline{X}$-Control Chart Based on the Gini′s Mean Difference (지니(Gini)의 평균차이에 기초한 $\overline{X}$-관리도)

  • 남호수;강중철
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.3
    • /
    • pp.79-85
    • /
    • 2001
  • Estimation of the process deviation is an important problem in statistical process control, especially in the control chart, process capability analysis or measurement system analysis. In this paper we suggest the use of the Gini's mean difference for the estimation of the process deviation when we design the control limits in construction of the control charts. The efficiency of the Gini's mean difference was well explained in Nam, Lee and Jung(2000). In this paper we propose an $\overline{X}$ control chart which use the control limits based on the Gini's mean difference. In various classes of distributions, the proposed control chart shows food performance.

  • PDF

Update Cycle Detection Method of Control Limits using Control Chart Performance Evaluation Model (관리도 성능평가모형을 통한 관리한계선 갱신주기 탐지기법)

  • Kim, Jongwoo;Park, Cheong-Sool;Kim, Jun Seok;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • Statistical process control (SPC) is an important technique for monitoring and managing the manufacturing process. In spite of its easiness and effectiveness, some problematic sides of application exist such that the SPC techniques are hardly reflect the changes of the process conditions. Especially, update of control limits at the right time plays an important role in acquiring a reasonable performance of control charts. Therefore, we propose the control chart performance evaluation index (CPEI) based on count data model to monitor and manage the performance of control charts. The CPEI could indicate the degree of control chart performance and be helpful to detect the proper update cycle of control limits in real time. Experiments using real manufacturing data show that the proper update intervals are made by proposed method.

EWMA control chart for Katz family of distributions (카즈분포족에 대한 지수가중이동평균관리도)

  • Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.681-688
    • /
    • 2010
  • In statistical process control, the primary method used to monitor the number of nonconformities is the c-chart. The conventional c-chart is based on the assumption that the occurrence of nonconformities in samples is well modeled by a Poisson distribution. When the Poisson assumption is not met, the X-chart is often used as an alternative charting scheme in practice. And EWMA control chart is used when it is desirable to detect out-of-control situations very quickly because of sensitive to a small or gradual drift in the process.

A Hybrid Approach to Statistical Process Control

  • Giorgio, Massimiliano;Staiano, Michele
    • International Journal of Quality Innovation
    • /
    • v.5 no.1
    • /
    • pp.52-67
    • /
    • 2004
  • Successful implementation of statistical process control techniques requires for operational definitions and precise measurements. Nevertheless, very often analysts can dispose of process data available only by linguistic terms, that would be a waste to neglect just because of their intrinsic vagueness. Thus a hybrid approach, which integrates fuzzy set theory and common statistical tools, sounds useful in order to improve effectiveness of statistical process control in such a case. In this work, a fuzzy approach is adopted to manage linguistic information, and the use of a Chi-squared control chart is proposed to monitor process performance.

Development of CV Control Chart Using EWMA Technique (EWMA 기법을 적용한 CV 관리도의 개발)

  • Hong, Eui-Pyo;Kang, Chang-Wook;Baek, Jae-Won;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.114-120
    • /
    • 2008
  • The control chart is widely used statistical process control(SPC) tool that searches for assignable cause of variation and detects any change of process. Generally, ${\bar{X}}-R$ control chart and ${\bar{X}}-S$ are most frequently used. When the production run is short and process parameter changes frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. The CV control chart is an effective tool to control the mean and variability of process simultaneously. The CV control chart, however, is not sensitive at small shift in the magnitude of CV. In this paper, we propose an CV-EWMA (exponentially weighted moving average) control chart which is effective in detecting a small shift of CV. Since the CV-EWMA control chart scheme can be viewed as a weighted average of all past and current CV values, it is very sensitive to small change of mean and variability of the process. We suggest the values of design parameters and show the results of the performance study of CV-EWMA control chart by the use of average run length (ARL). When we compared the performance of CV-EWMA control chart with that of the CV control chart, we found that the CV-EWMA control chart gives longer in-control ARL and much shorter out-of-control ARL.

Economic-Statistical Design of Double Sampling T2 Control Chart under Weibull Failure Model (와이블 고장모형 하에서의 이중샘플링 T2 관리도의 경제적-통계적 설계 (이중샘플링 T2 관리도의 경제적-통계적 설계))

  • Hong, Seong-Ok;Lee, Min-Koo;Lee, Jooho
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.471-488
    • /
    • 2015
  • Purpose: Double sampling $T^2$ chart is a useful tool for detecting a relatively small shift in process mean when the process is controlled by multiple variables. This paper finds the optimal design of the double sampling $T^2$ chart in both economical and statistical sense under Weibull failure model. Methods: The expected cost function is mathematically derived using recursive equation approach. The optimal designs are found using a genetic algorithm for numerical examples and compared to those of single sampling $T^2$ chart. Sensitivity analysis is performed to see the parameter effects. Results: The proposed design outperforms the optimal design of the single sampling $T^2$ chart in terms of the expected cost per unit time and Type-I error rate for all the numerical examples considered. Conclusion: Double sampling $T^2$ chart can be designed to satisfy both economic and statistical requirements under Weibull failure model and the resulting design is better than the single sampling counterpart.

Design of the GLR Chart in Integrated Process Control (통합공정관리에서 일반화가능도비 관리도의 설계)

  • Chun, Ga-Young;Lee, Jae-Heon
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.357-365
    • /
    • 2010
  • This paper considers the integrated process control procedure for detecting special causes in an IMA(1,1) noise process that is being adjusted using a minimum mean squared error adjustment. As a SPC procedure, we use a GLR chart for detecting special causes whose effects are the sustained shift or the sustained drift in the process mean, and the sustained shift in the process variance. For the design of the GLR chart, we derive expressions for the control limit which accurately satisfies the given in-control ARL.

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).

Robust Control Chart for the Control of the Process Mean (공정평균을 관리하기 위한 로버스트 관리도)

  • 이병근;정현석;남호수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.65-71
    • /
    • 1998
  • Control chart is a very extensively used tool in testing whether a process is in a state of statistical control or not. In this paper, a robust control chart for variables is proposed, which is based on the Huber's M-estimator. The Huber's M-estimator is a well-known robust estimator in sense of distributional robustness. In the proposed chart, the estimation of the process deviation is modified to have a stable level and high power. To compare the performances of the proposed control chart with the classical (equation omitted), some Monte Carlo simulations are performed. The simulation results show that the robust control chart has good performance.

  • PDF

An Adaptive Synthetic Control Chart for Detecting Shifts in the Process Mean (공정평균 이동을 탐지하기 위한 적응 합성 관리도)

  • Lim Taejin
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.169-183
    • /
    • 2004
  • The synthetic control chart (SCC) proposed by Wu and Spedding (2000) is to detect shifts in the process mean. The performance was re-evaluated by Davis and Woodall (2002), and the steady-state average run length (ARL) performance was shown to be inferior to cumulative sum (CUSUM) or exponentially weighted moving average (EWMA) chart This paper proposes a simple adaptive scheme to improve the performance of the synthetic control chart. That is, once a non-conforming (NC) sample occurs, we investigate the next L-consecutive samples with larger sample sizes and shorter sampling intervals. We employ a Markov chain model to derive the ARL and the average time to s19na1 (ATS). We also propose a statistical design procedure for determining decision variables. Comprehensive comparative study shows that the proposed control chart is uniformly superior to the original SCC or double sampling (DS) Χ chart and comparable to the EWMA chart in ATS performance.