• Title/Summary/Keyword: statistical process control chart

Search Result 168, Processing Time 0.029 seconds

Design of Robust Expected Loss Control Chart (로버스트 기대손실 관리도의 설계)

  • Lee, Hyeung-Jun;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.10-17
    • /
    • 2016
  • Control Chart is a graph which dots the characteristic values of a process. It is the tool of statistical technique to keep a process in controlled condition. It is also used for investigating the state of a process. Therefore many companies have used Control Chart as the tool of statistical process control (SPC). Products from a production process represent accidental dispersion values around a certain reference value. Fluctuations cause of quality dispersion is classified as a chance cause and a assignable cause. Chance cause refers unmanageable practical cause such as operator proficiency differences, differences in work environment, etc. Assignable cause refers manageable cause which is possible to take actions to remove such as operator inattention, error of production equipment, etc. Traditionally ${\bar{x}}-R$ control chart or ${\bar{x}}-s$ control chart is used to find and remove the error cause. Traditional control chart is to determine whether the measured data are in control or not, and lets us to take action. On the other hand, RNELCC (Reflected Normal Expected Loss Control Chart) is a control chart which, even in controlled state, indicates the information of economic loss if a product is in inconsistent state with process target value. However, contaminated process can cause control line sensitive and cause problems with the detection capabilities of chart. Many studies on robust estimation using trimmed parameters have been conducted. We suggest robust RNELCC which used the idea of trimmed parameters with RNEL control chart. And we demonstrate effectiveness of new control chart by comparing with ARL value among traditional control chart, RNELCC and robust RNELCC.

The Economic Design of VSS $\bar{x}$ Control Chart for Compounding Effect of Double Assignable Causes (두 가지 복합 이상원인 영향이 있는 공정에 대한 VSS$\bar{x}$관리도의 경제적 설계)

  • Sim Seong-Bo;Kang Chang-Wook;Kang Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.114-122
    • /
    • 2004
  • In statistical process control applications, variable sample size (VSS) $\bar{X}$ chart is often used to detect the assignable cause quickly. However, it is usually assumed that only one assignable cause results in the out-of-control in the process. In this paper, we propose the algorithm to minimize the function of cost per unit time and compare the economic design and the statistical design by use of the value of cost per unit time. We consider double assignable causes to occur with compound in the process and adopt the Markov chain approach to investigate the statistical properties of VSS $\bar{X}$ chart. A procedure that can calculate the control chart's parameters is proposed by the economic design.

The CV Control Chart

  • Kang, Chang-W;Lee, Man-S;Hawkins, Douglas M.
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.11a
    • /
    • pp.211-216
    • /
    • 2006
  • Monitoring variability is a vital part of modem statistical process control. The conventional Shewhart Rand S charts address the setting where the in-control process readings have a constant variance. In some settings, however, it is the coefficient of variation, rather than the variance, that should be constant. This paper develops a chart, equivalent to the S chart, for monitoring the coefficient of variation using rational groups of observations.

  • PDF

A Selectively Cumulative Sum(S-CUSUM) Control Chart (선택적 누적합(S-CUSUM) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.126-134
    • /
    • 2005
  • This paper proposes a selectively cumulative sum(S-CUSUM) control chart for detecting shifts in the process mean. The basic idea of the S-CUSUM chart is to accumulate previous samples selectively in order to increase the sensitivity. The S-CUSUM chart employs a threshold limit to determine whether to accumulate previous samples or not. Consecutive samples with control statistics out of the threshold limit are to be accumulated to calculate a standardized control statistic. If the control statistic falls within the threshold limit, only the next sample is to be used. During the whole sampling process, the S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L -consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain approach is employed to describe the S-CUSUM sampling process. Formulae for the steady state probabilities and the Average Run Length(ARL) during an in-control state are derived in closed forms. Some properties useful for designing statistical parameters are also derived and a statistical design procedure for the S-CUSUM chart is proposed. Comparative studies show that the proposed S-CUSUM chart is uniformly superior to the CUSUM chart or the Exponentially Weighted Moving Average(EWMA) chart with respect to the ARL performance.

An Economic-Statistical Design of Moving Average Control Charts

  • Yu, Fong-Jung;Chin, Hsiang;Huang, Hsiao Wei
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.107-115
    • /
    • 2006
  • Control charts are important tools of statistical quality control. In 1956, Duncan first proposed the economic design of $\bar{x}-control$ charts to control normal process means and insure that the economic design control chart actually has a lower cost, compared with a Shewhart control chart. An moving average (MA) control chart is more effective than a Shewhart control chart in detecting small process shifts and is considered by some to be simpler to implement than the CUSUM. An economic design of MA control chart has also been proposed in 2005. The weaknesses to only the economic design are poor statistics because it dose not consider type I or type II errors and average time to signal when selecting design parameters for control chart. This paper provides a construction of an economic-statistical model to determine the optimal parameters of an MA control chart to improve economic design. A numerical example is employed to demonstrate the model's working and its sensitivity analysis is also provided.

Comparison and Evaluation of Performance for Standard Control Limits and Bootstrap Percentile Control Limits in $\bar{x}$ Control Chart ($\bar{x}$ 관리도의 표준관리한계와 부트스트랩 백분률 관리한계의 수행도 비교평가)

  • 송서일;이만웅
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.347-354
    • /
    • 1999
  • Statistical Process Control(SPC) which uses control charts is widely used to inspect and improve manufacturing process as a effective method. A parametric method is the most common in statistical process control. Shewhart chart was made under the assumption that measurements are independent and normal distribution. In practice, this assumption is often excluded, for example, in case of (equation omitted) chart, when the subgroup sample is small or correlation, it happens that measured data have bias or rejection of the normality test. A bootstrap method can be used in such a situation, which is calculated by resampling procedure without pre-distribution assumption. In this study, applying bootstrap percentile method to (equation omitted) chart, it is compared and evaluated standard process control limit with bootstrap percentile control limit. Also, under the normal and non-normal distributions, where parameter is 0.5, using computer simulation, it is compared standard parametric with bootstrap method which is used to decide process control limits in process quality.

  • PDF

GLR Charts for Simultaneously Monitoring a Sustained Shift and a Linear Drift in the Process Mean

  • Choi, Mi Lim;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.69-80
    • /
    • 2014
  • This paper considers the problem of monitoring the mean of a normally distributed process variable when the objective is to effectively detect both a sustained shift and a linear drift. The design and application of a generalized likelihood ratio (GLR) chart for simultaneously monitoring a sustained shift and a linear drift are evaluated. The GLR chart has the advantage that when we design this chart, we do not need to specify the size of the parameter change. The performance of the GLR chart is compared with that of other control charts, such as the standard cumulative sum (CUSUM) charts and the cumulative score (CUSCORE) charts. And we compare the proposed GLR chart with the GLR charts designed for monitoring only a sustained shift and for monitoring only a linear drift. Finally, we also compare the proposed GLR chart with the chart combinations. We show that the proposed GLR chart has better overall performance for a wide range of shift sizes and drift rates relative to other control charts, when a special cause produces a sustained shift and/or a linear drift in the process mean.

Local T2 Control Charts for Process Control in Local Structure and Abnormal Distribution Data (지역적이고 비정규분포를 갖는 데이터의 공정관리를 위한 지역기반 T2관리도)

  • Kim, Jeong-Hun;Kim, Seoung-Bum
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.337-346
    • /
    • 2012
  • Purpose: A Control chart is one of the important statistical process control tools that can improve processes by reducing variability and defects. Methods: In the present study, we propose the local $T^2$ multivariate control chart that can efficiently detect abnormal observations by considering the local pattern of the in-control observations. Results: A simulation study has been conducted to examine the property of the proposed control chart and compare it with existing multivariate control charts. Conclusion: The results demonstrate the usefulness and effectiveness of the proposed control chart.

Design of ALT Control Chart for Small Process Variation (미세변동공정관리를 위한 가속수명시험관리도 설계)

  • Kim, Jong-Gurl;Um, Sang-Joon
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2012
  • In the manufacturing process the most widely used $\bar{X}$ chart has been applied to control the process mean. Also, Accelerated Life Test(ALT) is commonly used for efficient assurance of product life in development phases, which can be applied in production reliability acceptance test. When life data has lognormal distribution, through censored ALT design so that censored ALT data has asymptotic normal distribution, $ALT\bar{X}$ control chart integrating $\bar{X}$ chart and ALT procedure could be applied to control the mean of process in the manufacturing process. In the situation that process variation is controlled, $Z_p$ control chart is an effective method for the very small fraction nonconforming of quality characteristic. A simultaneous control scheme with $ALT\bar{X}$ control chart and $Z_p$ control chart is designed for the very small fraction nonconforming of product lifetime.

Portfolio Management Using Statistical Process Control Chart (SPC 차트를 이용한 포트폴리오 관리)

  • Kim, Dong-Sup;Ryoo, Hong-Seo
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.94-102
    • /
    • 2007
  • Portfolio management deals with decision making on 'when' and 'how' to revise an existing portfolio. In this paper, we show that a classical statistical process control (SPC) chart for normal data, a wellestablished tool in quality engineering, can effectively be used for signaling times for revising a portfolio. Noting that the day-to-day performance of a portfolio may be auto-correlated, we use the exponentially weighted moving average center-line chart to develop an automatic portfolio management procedure. The portfolio management procedure is extensively tested on historical data of equities traded in the Korea Exchange (KRX), the American Stock Exchange (AMEX), and the New York Stock Exchange (NYSE). In comparison with the performances of the KOSPI, XAX, and NYA indices during the same time periods, results from these experiments show that SPC chart-based portfolio revision presents itself a convenient and reliable method for optimally managing portfolios.