• Title/Summary/Keyword: statistical power

Search Result 1,610, Processing Time 0.028 seconds

Sample Size and Statistical Power Calculation in Genetic Association Studies

  • Hong, Eun-Pyo;Park, Ji-Wan
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • A sample size with sufficient statistical power is critical to the success of genetic association studies to detect causal genes of human complex diseases. Genome-wide association studies require much larger sample sizes to achieve an adequate statistical power. We estimated the statistical power with increasing numbers of markers analyzed and compared the sample sizes that were required in case-control studies and case-parent studies. We computed the effective sample size and statistical power using Genetic Power Calculator. An analysis using a larger number of markers requires a larger sample size. Testing a single-nucleotide polymorphism (SNP) marker requires 248 cases, while testing 500,000 SNPs and 1 million markers requires 1,206 cases and 1,255 cases, respectively, under the assumption of an odds ratio of 2, 5% disease prevalence, 5% minor allele frequency, complete linkage disequilibrium (LD), 1:1 case/control ratio, and a 5% error rate in an allelic test. Under a dominant model, a smaller sample size is required to achieve 80% power than other genetic models. We found that a much lower sample size was required with a strong effect size, common SNP, and increased LD. In addition, studying a common disease in a case-control study of a 1:4 case-control ratio is one way to achieve higher statistical power. We also found that case-parent studies require more samples than case-control studies. Although we have not covered all plausible cases in study design, the estimates of sample size and statistical power computed under various assumptions in this study may be useful to determine the sample size in designing a population-based genetic association study.

Statistical Package fo Sample Size and Power Determination (표본의 수와 검정력 분석을 위한 통계팩키지)

  • Lee, Kwan-Jeh
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.2
    • /
    • pp.17-38
    • /
    • 2000
  • In application, sample size determination is one of the important problems in designing an experiment. A large amount of literature has been published on the problem of determining sample size and power for various statistical models. In practice, however, it is not easy to calculate sample size and/or power because the formula and other results derived from statistical model are scattered in various textbooks and journal articles. This paper describes some previously published theories that have practical relevance for sample size and power determination in various statistical problems, including life-testing problems with censored cases and introduces a statistical package which calculates sample size and power according to the results described. The screens and numerical results made by the package are demonstrated.

  • PDF

Empirical Statistical Power for Testing Multilocus Genotypic Effects under Unbalanced Designs Using a Gibbs Sampler

  • Lee, Chae-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1511-1514
    • /
    • 2012
  • Epistasis that may explain a large portion of the phenotypic variation for complex economic traits of animals has been ignored in many genetic association studies. A Baysian method was introduced to draw inferences about multilocus genotypic effects based on their marginal posterior distributions by a Gibbs sampler. A simulation study was conducted to provide statistical powers under various unbalanced designs by using this method. Data were simulated by combined designs of number of loci, within genotype variance, and sample size in unbalanced designs with or without null combined genotype cells. Mean empirical statistical power was estimated for testing posterior mean estimate of combined genotype effect. A practical example for obtaining empirical statistical power estimates with a given sample size was provided under unbalanced designs. The empirical statistical powers would be useful for determining an optimal design when interactive associations of multiple loci with complex phenotypes were examined.

Estimation of the optimal probability distribution for daily electricity generation by wind power in rural green-village planning (농촌 그린빌리지 계획을 위한 일별 풍력발전량의 적정확률분포형 추정)

  • Kim, Dae-Sik;Koo, Seung-Mo;Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.27-35
    • /
    • 2008
  • This study aims to estimate the optimal probability distribution of daily electricity generation by wind power, in order to contribute in rural green-village planning. Wind power generation is now being recognized as one of the most popular sources for renewable resources over the country. Although it is also being adapted to rural area for may reasons, it is important to estimate the magnitudes of power outputs with reliable statistical methodologies while applying historical daily wind data, for correct feasibility analysis. In this study, one of the well-known statistical methodology is employed to define the appropriate statistical distributions for monthly power outputs for specific rural areas. The results imply that the assumption of normal distributions for many cases may lead to incorrect decision-making and therefore lead to the unreliable feasibility analysis. Subjective methodology for testing goodness of fit for normal distributions on all the cases in this study, provides possibilities to consider the other various types of statistical distributions for more precise feasibility analysis.

The analysis of RF dosimetric uncertainties by using statistical method at in-vivo and in-vitro experiments (RF 전자기장 생체 영향 실험에서 통계적 방법을 통한 전자기장 노출 불확실성 분석)

  • Choi, Sung-Ho;Kim, Nam
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.74-78
    • /
    • 2003
  • This paper shows the dosimetric uncertainties of electromagnetic field at in-vivo and in-vitro experiments. For more accurate consequences of these researches, we have tried to find out any correlations among output power, power density and specific absorption rate(SAR) with the results of in-vivo, in-vitro tests and SAR reports of cellular phone and PDA. In the case of in-vivo tests, the power density has close statistical correlations with SAR value and in the event of in-vitro tests, the output power has considerable statistical correlations with SAR containing duty factor. On the other hand, we found that both power density and output power don't have any close correlations with SAR. And, we obtained fitted regression form among frequency, power density and SAR containing duty factor through multiple linear regression analysis.

  • PDF

The Effect of Increasing Control-to-case Ratio on Statistical Power in a Simulated Case-control SNP Association Study

  • Kang, Moon-Su;Choi, Sun-Hee;Koh, In-Song
    • Genomics & Informatics
    • /
    • v.7 no.3
    • /
    • pp.148-151
    • /
    • 2009
  • Generally, larger sample size leads to a greater statistical power to detect a significant difference. We may increase the sample size for both case and control in order to obtain greater power. However, it is often the case that increasing sample size for case is not feasible for a variety of reasons. In order to look at change in power as the ratio of control to case varies (1:1 to 4:1), we conduct association tests with simulated data generated by PLINK. The simulated data consist of 50 disease SNPs and 300 non-disease SNPs and we compute powers for disease SNPs. Genetic Power Calculator was used for computing powers with varying the ratio of control to case (1:1, 2:1, 3:1, 4:1). In this study, we show that gains in statistical power resulting from increasing the ratio of control to case are substantial for the simulated data. Similar results might be expected for real data.

Test of Normality Based on the Normalized Sample Lorenz Curve

  • Kang, Suk-Bok;Cho, Young-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.851-858
    • /
    • 2001
  • Using the normalized sample Lorenz curve which is introduced by Kang and Cho (2001), we propose the test statistics for testing of normality that is very important test in statistical analysis and compare the proposed test with the other tests in terms of the power of test through by Monte Carlo method. The proposed test is more power than the other tests except some cases

  • PDF

Reliability in Two Independent Uniform and Power Function-Half Normal Distribution

  • Woo, Jung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.325-332
    • /
    • 2008
  • We consider estimation of reliability P(Y < X) and distribution of the ratio when X and Y are independent uniform random variable and power function random variable, respectively and also consider the estimation problem when X and Y are independent uniform random variable and a half-normal random variable, respectively.

Classical and Bayesian methods of estimation for power Lindley distribution with application to waiting time data

  • Sharma, Vikas Kumar;Singh, Sanjay Kumar;Singh, Umesh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.193-209
    • /
    • 2017
  • The power Lindley distribution with some of its properties is considered in this article. Maximum likelihood, least squares, maximum product spacings, and Bayes estimators are proposed to estimate all the unknown parameters of the power Lindley distribution. Lindley's approximation and Markov chain Monte Carlo techniques are utilized for Bayesian calculations since posterior distribution cannot be reduced to standard distribution. The performances of the proposed estimators are compared based on simulated samples. The waiting times of research articles to be accepted in statistical journals are fitted to the power Lindley distribution with other competing distributions. Chi-square statistic, Kolmogorov-Smirnov statistic, Akaike information criterion and Bayesian information criterion are used to access goodness-of-fit. It was found that the power Lindley distribution gives a better fit for the data than other distributions.