Reliability in Two Independent Uniform and Power Function-Half Normal Distribution

Jungsoo Woo¹⁾

Abstract

We consider estimation of reliability P(Y < X) and distribution of the ratio when X and Y are independent uniform random variable and power function random variable, respectively and also consider the estimation problem when X and Y are independent uniform random variable and a half-normal random variable, respectively.

Keywords: Half-normal distribution; power function distribution; reliability.

1. Introduction

The power function distribution was introduced in Johnson $et\ al.\ (1994)$ and Ali and Woo (2005a) studied inference on reliability in two independent power function distributions each having different parameter. And as a special case of power function distribution, it becomes a uniform distribution. Woo (2007a) studied reliability in two independent half-normal distributions each having different scale parameter. Ali and Woo (2005c) studied inference on reliability in a p-dimensional Rayleigh distribution.

Many authors have considered various aspects of a uniform distributions (see, Johnson, et al., 1994). McCool (1991) considered inference on reliability P(X < Y) in the Weibull case. Ali and Woo (2005b) considered inference on reliability P(Y < X) when X and Y are the same Levy distributions. Woo (2006) presented reliability P(Y < X), ratio X/(X + Y) and a skewed-symmetric distribution of two independent random variables, Woo (2007b) studied reliability in a half-triangle distribution and a skew-symmetric distribution.

In this paper, we consider point and interval estimations of the reliability P(Y < X) when X and Y are two independent uniform random variable and power function random variable, respectively, and in the second case when X and Y are independent uniform random variable and a half-normal random variable, respectively. Especially we consider distribution of the ratio when X and Y are two independent uniform random variable and power function random variable, respectively.

¹⁾ Professor, Department of Statistics, Yeungnam University, Gyongsan 712-749, Korea. E-mail: jswoo@ynu.ac.kr

2. Uniform and Power Function

In this section, we consider the case for the estimation of P(Y < X) when (X, Y) is a pair of uniform and power function random variables, respectively. As an application of this case X, representing time to sustain temperature, is a uniform random variable and Y, representing time to sustain air pressure of a tube, is a power function random variable.

2.1. Reliability

Let X and Y be two independent a uniform random variable and a power function random variable (see, Johnson et al., 1994) with the following densities:

$$f_X(x) = \frac{1}{\theta_1}, 0 < x < \theta_1, \ \theta_1 > 0,$$

$$f_Y(y) = \alpha \theta_2^{-\alpha} y^{\alpha - 1}, 0 < y < \theta_2, \ \theta_2 > 0, \ \alpha > 0.$$
 (2.1)

Especially if $\alpha = 1$ in (2.1), then Y has a uniform distribution over $(0, \theta_2)$. From the densities (2.1), we obtain the reliability P(X < Y):

Fact 1. When X and Y are independent uniform random variable and power function random variable having the densities (2.1) with known $\alpha > 0$, then, for $\rho \equiv \theta_1/\theta_2$,

$$R \equiv P(X < Y) = \begin{cases} \frac{\alpha}{\alpha + 1} \rho^{-1}, & \text{if } \theta_2 < \theta_1, \\ 1 - \frac{1}{1 + \alpha} \rho^{\alpha}, & \text{if } \theta_2 \ge \theta_1, \end{cases}$$

which the reliability R = P(X < Y) is a monotone function of $\rho \equiv \theta_1/\theta_2$.

We now consider estimation on the reliability P(X < Y) when X and Y are independent uniform random variable and power function random variable, respectively having the densities (2.1) with known $\alpha > 0$. Because R = P(X < Y) is a monotone function of ρ in Fact 1, inference on the reliability is equivalent to inference on ρ (see, McCool, 1991). Hence we only consider estimation on $\rho \equiv \theta_1/\theta_2$ instead of estimating R = P(X < Y).

Assume X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be two independent samples from X and Y with the densities in (2.1) with known $\alpha > 0$, respectively, then we have the followings: The MLE $\hat{\theta}_i$ of θ_i , i = 1, 2 are given by:

$$\hat{\theta}_1 = X_{(m)} = \max(X_1, X_2, \dots, X_m),$$

 $\hat{\theta}_2 = Y_{(n)} = \max(Y_1, Y_2, \dots, Y_n).$

The densities of $\hat{\theta}_1$ and $\hat{\theta}_2$ are given by

$$f_{X_{(m)}}(x) = \frac{m}{\theta_1^m} x^{m-1}, \quad 0 < x < \theta_1,$$

$$f_{Y_{(n)}}(x) = \frac{\alpha n}{\theta_2^{\alpha n}} x^{\alpha n - 1}, \quad 0 < x < \theta_2, \quad \text{respectively.}$$
(2.2)

\overline{m}	n	$\alpha = 1/2$		$\alpha = 1/2$		$\alpha = 1$		$\alpha = 2$		$\alpha = 4$	
		$\hat{ ho}$	$ ilde{ ilde{ ho}}$	$-\overline{\hat{ ho}}$	$ ilde{ ho}$	$\hat{ ho}$	$ ilde{ ho}$	$\hat{ ho}$	$ ilde{ ilde{ ho}}$	$\hat{ ho}$	$ ilde{ ho}$
10	10	2.13636	0.81500	0.11616	0.07556	0.02146	0.02094	0.01205	0.01113	0.01239	0.00899
	20	$0.1\overline{1616}$	0.07556	0.02146	0.02094	0.02105	0.01113	$0.012\overline{39}$	0.00897	0.01350	0.00849
	30	0.03846	$0.03\overline{278}$	0.01349	0.01348	0.01198	0.00953	0.01307	0.00862	$0.01\overline{3}39$	0.00840
20	10	2.37085	0.80409	0.13420	0.06909	0.01996	0.01480	0.00509	0.00506	0.00334	0.00293
	20	0.13420	0.06909	$0.0\overline{1996}$	0.01480	0.00509	0.00506	0.00334	0.00293	0.00353	0.00243
	30	0.04187	0.02657	0.00813	0.00741	0.00358	0.00347	0.00339	0.00256	0.00373	0.00234
30	10	2.46169	0.80188	0.14315	0.06778	0.02134	0.01356	0.00432	0.00382	0.00173	$0.0\overline{0}170$
	20	0.14315	0.06778	$0.0\overline{2134}$	0.01356	0.00432	0.00382	0.00173	0.00170	0.00155	0.00120
	30	0.04516	0.02531	0.00799	0.00617	0.00224	0.00223	0.00154	0.00133	0.00144	0.00111

Table 2.1: MSE of the MLE and an unbiased estimator (units: ρ^2)

From the densities (2.2), we obtain the k-moments of $X_{(m)}$ and $1/Y_{(n)}$:

$$E\left(X_{(m)}^{k}\right) = \frac{m}{m+k}\theta_{1}^{k} \quad \text{and} \quad E\left(\frac{1}{Y_{(n)}^{k}}\right) = \frac{\alpha n}{\alpha n - k}\theta_{2}^{-k}, \quad \text{if} \quad \alpha n > k. \tag{2.3}$$

The MLE of ρ is given by:

$$\hat{\rho} = \frac{\hat{\theta}_1}{\hat{\theta}_2} = \frac{X_{(m)}}{Y_{(n)}}.$$
(2.4)

From the results (2.3) and (2.4), we obtain expectation and variance of the MLE $\hat{\rho}$:

$$E(\hat{\rho}) = \frac{\alpha mn}{(m+1)(\alpha n - 1)} \rho,$$

$$Var(\hat{\rho}) = \left\{ \frac{\alpha mn}{(m+2)(\alpha n - 2)} - \frac{\alpha^2 m^2 n^2}{(m+1)^2 (\alpha n - 1)^2} \right\} \rho^2.$$
 (2.5)

From expectation of the MLE in (2.5), we define an unbiased estimator of ρ by:

$$ilde{
ho} = rac{(m+1)(lpha n-1)}{lpha m n} \cdot rac{X_{(m)}}{Y_{(n)}},$$

which has variance as:

$$Var(\tilde{\rho}) = \left\{ \frac{(m+1)^2 (\alpha n - 1)^2}{\alpha m n (m+2) (\alpha n - 2)} - 1 \right\} \rho^2.$$
 (2.6)

From the results (2.5) and (2.6), Table 2.1 shows numerical values of mean squared errors(MSE) of the MLE and an unbiased estimator.

From Table 2.1 we observe the following:

Fact 2. The unbiased estimator performs better than the MLE in a sense of MSE.

Next we consider a confidence interval for ρ . First thing the quantity $Q=(1/\rho)(X_{(m)}/Y_{(n)})$ is a pivot quantity having the following density which doesn't involve ρ :

From Theorem 7(21) in Rohatgi (1976, p.141), the density of Q is obtained as:

$$f_Q(x) = \begin{cases} \frac{\alpha mn}{m + \alpha n} x^{m-1}, & \text{if } 0 < x < 1, \\ \frac{\alpha mn}{m + \alpha n} x^{-\alpha n - 1}, & \text{if } x \ge 1. \end{cases}$$
 (2.7)

From the density (2.7) of Q, we can obtain an confidence interval for ρ : For $0 < 1 - p_1 - p_2 < 1$, $p_i > 0$ an $(1 - p_1 - p_2)100\%$ confidence interval for ρ is given as:

$$\left(\left(\frac{m+\alpha n}{\alpha n}\cdot p_1\right)^{\frac{1}{m}},\,\left(\frac{m+\alpha n}{m}\cdot p_2\right)^{-\frac{1}{\alpha n}}\right),$$

where $p_1(p_2)$ is a lower (upper) probability of the density of Q and any real number $p'_i s$ are satisfying $0 < 1 - p_1 - p_2 < 1$, $p_i > 0$.

2.2. Ratio of random variables

Let X and Y be two independent uniform random variable and power function random variable with the densities (2.1). Then, from Theorem 7(21) in Rohatgi and Rahtigi (1976, p.141), the density of W = Y/X is given by:

$$f_{W}(w) = \begin{cases} \frac{\alpha}{\alpha + 1} \cdot \rho^{\alpha} w^{\alpha - 1}, & \text{if } 0 < w < \frac{1}{\rho}, \\ \frac{\alpha}{(\alpha + 1)\rho} \cdot w^{-2}, & \text{if } w \ge \frac{1}{\rho}. \end{cases}$$
 (2.8)

Let R = X/(X+Y) be a ratio of X-variates among (X+Y)-variates. Then R = 1/(1+W) and hence, we obtain the density of ratio R by the density (2.8):

$$f_R(r) = \begin{cases} \frac{\alpha}{(\alpha+1)\rho} \cdot \frac{1}{(1-r)^2}, & \text{if } 0 < r \le \frac{\rho}{1+\rho}, \\ \frac{\alpha}{\alpha+1} \cdot \frac{\rho^{\alpha}(1-r)^{\alpha-1}}{r^{\alpha+1}}, & \text{if } \frac{\rho}{1+\rho} < r < 1. \end{cases}$$
(2.9)

From the density (2.9) of the ratio R and the formula 6.6.1 in Abramowitz and Stegun (1970, p.263), the k^{th} moment of the ratio R = X/(X+Y) is obtained by:

$$E(R^k) = \frac{\alpha}{(1+\alpha)\rho} \left\{ B_{\frac{\rho}{1+\rho}}(k+1, -1) + \rho^{\alpha+1} \cdot B_{1-\frac{\rho}{1+\rho}}(\alpha, k-\alpha) \right\}, \tag{2.10}$$

where $B_x(a, b)$ is the incomplete beta function of 0 < x < 1.

To evaluate numerical mean and variance of the ratio R, we simplify the following incomplete beta function from the recursion formulas 15.1.3 & 15.1.8, 15.2.18 & 15.2.20 in Abramowitz and Stegun (1970, pp. 556–558).

α	$\rho = 1/4$		$\rho = 1/2$		$\rho=2$		$\rho = 4$	
	mean	variance	mean	variance	mean	variance	mean	variance
1/4	0.54066	0.12787	0.61570	0.11548	0.74494	0.09598	0.78697	0.09598
1/2	0.40244	0.09175	0.50994	0.08774	0.72365	0.06007	0.80772	0.04542
1	0.25491	0.04244	0.36920	0.05275	0.63080	0.05276	0.74508	0.04246
2	0.17125	0.01431	0.27631	0.02552	0.55261	0.04349	0.68500	0.04125
4	0.13511	0.00621	0.22969	0.01456	0.50400	0.03699	0.64510	0.03957

Table 2.2: Numerical values of mean and variance of the ratio R = X/(X+Y)

Lemma 2.1

(a)
$$B_x(2, -1) = \frac{x^2}{1-x} + x + \ln(1-x), \quad 0 < x < 1.$$

(b)
$$B_x(3, -1) = 2x\{1 + x^{-1}\ln(1 - x)\} - \frac{x^2}{1 - x}, \quad 0 < x < 1.$$

(c)
$$B_{1-x}(\alpha, 1-\alpha) = \alpha^{-1}(1-x)^{\alpha}F(\alpha, \alpha; \alpha+1; 1-x)$$
, and $B_{1-x}(\alpha, 2-\alpha) = \alpha^{-1}(1-x)^{\alpha}F(\alpha-1, \alpha; \alpha+1; 1-x)$, $0 < x < 1$.

where F(a, b; c; x) is the hypergeometric function.

By Lemma 2.1 and the recursion formulas of the hypergeometric function in Abramowitz and Stegun (1970, p.558), Table 2.2 shows mean and variance of ratio R for $\rho = 1/4$, 1/2, 2, 4 and $\alpha = 1/4$, 1/2, 1, 2, 4.

From Table 2.2 we observe the followings:

Fact 3.

- (a) Mean gets larger as the value of ρ gets larger, but variance gets smaller.
- (b) Mean and variance get smaller as the value of α gets larger.

3. Uniform and Half-Normal

In this section, we consider the case for the estimation of P(Y < X) when (X, Y) is a pair of uniform and half-normal random variables, respectively. As an application of this case X, representing time to sustain temperature enduring a state of equilibrium, is a uniform random variable and Y, representing a velocity of regular gas in a state of equilibrium, is a half-normal random variable.

3.1. Reliability

Let X and Y be two independent uniform random variable and half-normal random variable (see, Johnson *et al.*, 1994; Woo, 2007a) with the following densities:

$$f_X(x) = \frac{1}{\theta},$$
 $0 < x < \theta, \ \theta > 0,$ $f_Y(y) = \sqrt{\frac{2}{\pi \beta}} e^{-\frac{y^2}{2}\beta}, \quad 0 < y, \ \beta > 0.$ (3.1)

From the densities (3.1), and formula 8.250(1) in Gradshteyn and Ryzhik (1965, p.930), we obtain the reliability P(X < Y):

Fact 4. When X and Y are independent uniform random variable and a half-normal random variable having the densities (2.1), then, for $\eta \equiv \theta^2/\beta$,

$$R \equiv P(X < Y) = \sqrt{\frac{2}{\pi}} \eta^{-\frac{1}{2}} \left(1 - e^{-\frac{\eta}{2}} \right) + 1 - \Phi\left(\sqrt{\frac{\eta}{2}}\right),$$

Where $\Phi(x) = 2/\sqrt{\pi} \int_0^x e^{-t^2} dt$.

Since $\eta > 0$, we get $dR/d\eta < 0$ and hence we obtain Fact 5:

Fact 5. R = P(X < Y) is a monotone decreasing function of η .

3.2. Estimating reliability P(X < Y)

We now consider estimation on the reliability P(X < Y) when X and Y are independent uniform random variable and half-normal random variable, respectively having the densities (3.1). Because R = P(X < Y) is a monotone function of η in Fact 5 and Remark, inference on the reliability is equivalent to inference on η (see, McCool, 1991). Hence we only consider estimation on $\eta \equiv \theta^2/\beta$ instead of estimating R = P(X < Y).

Assume X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be two independent samples from X and Y with the densities in (3.1), respectively, then we have the followings:

Let $\hat{\theta}^2$ and $\hat{\beta}$ be the MLE of θ^2 and β , respectively. Then the MLE are given by:

$$\hat{\theta}^2 = X_{(m)}^2 = \{ \max(X_1, X_2, \dots, X_m) \}^2 \text{ and } \hat{\beta} = \frac{1}{n} \sum_{i=1}^n Y_i^2.$$

We need the following well-known results to evaluate expectation and variance of the MLE:

Fact 6.

- (a) $\sum_{i=1}^{n} Y_i^2/2$ has a gamma distribution with the shape parameter n/2 and the scale parameter β .
- (b) If Y has a gamma distribution with a shape α and a scale β , then $E(1/Y^k) = \Gamma(\alpha k)/(\Gamma(\alpha)\beta^k)$, if $\alpha > k$.

From the result (2.3) and Fact 6 (a) & (b), we obtain the 1st and 2nd moments of the MLE $\hat{\eta} = \hat{\theta}^2/\hat{\beta} = nX_{(m)}^2/\sum_{i=1}^n Y_i^2$ of $\eta = \theta^2/\beta$.

$$E(\hat{\eta}) = \frac{mn}{(m+2)(n-2)}\eta, \quad \text{if } \eta > 2,$$
 (3.2)

$$E(\hat{\eta}^2) = \frac{mn^2}{(m+4)(n-2)(n-4)}\eta^2, \quad \text{if } n > 4.$$
 (3.3)

From expectation (3.2), an unbiased estimator $\tilde{\eta}$ of $\eta = \theta^2/\beta$ is defined as:

$$\tilde{\eta} = \frac{(m+2)(n-2)}{m} \cdot \frac{X_{i}(m)^{2}}{\sum_{i=1}^{n} Y_{i}^{2}}.$$
(3.4)

m		1	0		20					
n	10	20	30	40	10	20	30	40		
$\hat{\eta}$	0.40476	0.14021	0.09933	0.08104	0.46338	0.13721	0.08217	0.06078		
$ ilde{\eta}$	0.37143	0.15714	0.10769	0.08571	0.34444	0.13438	0.08589	0.06435		
100		9	30		1		0			
m			• U		40					
	10	20	30	40	10	20	30	40		
n		20	1 30	10	1 10	1 20	00	10		

0.05969

Table 3.1: Table 3. MSE of the MLE $\hat{\eta}$ and an unbiased estimator $\tilde{\eta}$ (unit: η^2)

By the same method, we obtain the 2^{nd} moment of $\tilde{\eta}$ by:

0.08115

$$E(\hat{\eta}^2) = \frac{(m+2)^2(n-2)}{m(m+4)(n-4)}\eta^2, \quad \text{if} \quad n > 4.$$
 (3.5)

0.12756

0.33636

0.07937

0.05796

From the results (3.2), (3.3) and (3.4), we obtain the following Table 3.1. From Table 3.1, we observe the following:

Fact 7.

0.33856

0.12941

- (a) The MLE and an unbiased estimator can't dominate each other.
- (b) The unbiased estimator performs better than the MLE in a sense of MSE, especially if m = 40 and n = 10, 20, 30, 40.

From Fact 7(a), since the MLE $\hat{\eta}$ and an unbiased estimator $\tilde{\eta}$ can't dominate each other, we can recommend the following estimator of η which is minimizing its mean squared error:

At first, as we find a constant "d" such that $E[(\hat{\hat{\eta}} - \eta)^2] \equiv E[(d \cdot X_{(m)}^2 / \sum_{i=1}^n Y_i^2 - \eta)^2]$ is minimized, and hence, the estimator $\hat{\hat{\eta}}$ which has the minimum MSE is recommended by:

$$\hat{\hat{\eta}} = \frac{(m+4)(n-4)}{(m+2)} \cdot \frac{X_{(m)}^2}{\sum_{i=1}^n Y_i^2}, \quad \text{if} \quad n > 4,$$
(3.6)

which the proposed estimator $\hat{\eta}$ is represented by the MLE $\hat{\eta}$:

$$\hat{\hat{\eta}} = \frac{(m+4)(n-4)}{(m+2)n} \cdot \hat{\eta}, \quad \text{if} \quad n > 4.$$
 (3.7)

By applying the MLE $\hat{\eta},$ an asymptotic $(1-\gamma)100\%$ confidence interval of is given by:

$$\hat{\eta} \pm z_{\frac{\gamma}{2}} \cdot \hat{\eta} \sqrt{\frac{mn^2}{(n-2)(n-4)(m+4)} - \frac{m^2n^2}{(m+2)^2(n-2)^2}}, \quad \text{if } n > 4,$$
 (3.8)

where $\int_{z_{\gamma/2}}^{\infty} \phi(t)dt = \gamma/2$, $\phi(t)$ is the standard normal density.

References

- Abramowitz, M. and Stegun, I. A. (1970). *Handbook of Mathematical Functions*, Dover Publications, New York.
- Ali, M. M. and Woo, J. (2005a). Inferences on reliability P(Y < X) in a power function distribution, Journal of Statistics & Management Systems, 8, 681–686.
- Ali, M. M. and Woo, J. (2005b). Inference on reliability P(Y < X) in the Levy distribution, *Mathematical and Computer Modelling*, 41, 965–971.
- Ali, M. M. and Woo, J. (2005c). Inference on reliability P(Y < X) in a p-dimensional Rayleigh distribution, Mathematical and Computer Modelling, 42, 367–373.
- Gradshteyn, I. S. and Ryzhik, I. M. (1965). Table of Integrals, Series and Products, Academic Press, New York.
- Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, John Wiley & Sons, New York.
- McCool, J. I. (1991). Inference on P(X < Y) in the Weibull case, Communications in Statistics-Simulation and Computations, 20, 129–148.
- Rohatgi, V. K. and Rahtigi, V. K. (1976). An Introduction To Probability Theory and Mathematical Statistics, John Wiley & Sons, New York.
- Woo, J. (2006). Reliability P(Y < X), ratio X/(X + Y) and a skewed-symmetric distribution of two independent random variables, In *Proceedings of Korean Data & Information Science Society November 2006*, 37–42.
- Woo. J. (2007a). On reliability and UMVUE of right-tail probability in a half normal variable, Journal of the Korean Data & Information Science Society, 18, 259–267.
- Woo. J. (2007b). Reliability in a half-triangle distribution and a skew-symmetric distribution, Journal of the Korean Data & Information Science Society, 18, 543–552.

[Received February 2008, Accepted March 2008]