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Reliability in Two Independent Uniform and Power
Function-Half Normal Distribution

Jungsoo Wool)

Abstract

We consider estimation of reliability P(Y < X) and distribution of the ratio
when X and Y are independent uniform random variable and power function ran-
dom variable, respectively and also consider the estimation problem when X and

Y are independent uniform random variable and a half-normal random variable,
respectively.
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.1. Introduction

The power function distribution was introduced in Johnson et al. (1994) and Ali
and Woo (2005a) studied inference on reliability in two independent power function
distributions each having different parameter. And as a special case of power function
distribution, it becomes a uniform distribution. Woo (2007a) studied reliability in two
independent half-normal distributions each having different scale parameter. Ali and
Woo (2005c¢) studied inference on reliability in a p-dimensional Rayleigh distribution.

Many authors have considered various aspects of a uniform distributions (see, John-
son, et al., 1994). McCool (1991) considered inference on reliability P(X < Y) in the
Weibull case. Ali and Woo (2005b) considered inference on reliability P(Y < X) when X
and Y are the same Levy distributions. Woo (2006) presented reliability P(Y < X), ratio
X/(X +7Y) and a skewed-symmetric distribution of two independent random variables,
Woo (2007b) studied reliability in a half-triangle distribution and a skew-symmetric dis-
tribution.

In this paper, we consider point and interval estimations of the reliability P(Y < X)
when X and Y are two independent uniform random variable and power function random
variable, respectively, and in the second case when X and Y are independent uniform
random variable and a half-normal random variable, respectively. Especially we consider

distribution of the ratio when X and Y are two independent uniform random variable
and power function random variable, respectively.
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2. Uniform and Power Function

In this section, we consider the case for the estimation of P(Y < X) when (X, Y) is
a pair of uniform and power function random variables, respectively. As an application
of this case X, representing time to sustain temperature, is a uniform random variable
and Y, representing time to sustain air pressure of a tube, is a power function random
variable. |

2.1. Reliability

Let X and Y be two independent a uniform random variable and a power function
random variable (see, Johnson et al., 1994) with the following densities:

1
fx(a:)zo—, O0<z <6 6, >0,
1
fy(y) =ab %1, 0<y<by, 02>0, a>0. (2.1)

Especially if &« =1 in (2.1), then Y has a uniform distribution over (0, 63).
From the densities (2.1), we obtain the reliability P(X < Y):

Fact 1. When X and Y are independent uniform random variable and power function
random variable having the densities (2.1) with known « > 0, then, for p = 6,/0-,

@

pL it 6y < 6y,
R=PX<Y)={ o+l
- o : >
1 1+ap, if 92.___917

which the reliability R = P(X < Y) is a monotone function of p = 6 /6-.

We now consider estimation on the reliability P(X < Y) when X and Y are indepen-
dent uniform random variable and power function random variable, respectively having
the densities (2.1) with known a > 0. Because R = P(X < Y) is a monotone function of
p in Fact 1, inference on the reliability is equivalent to inference on p (see, McCool, 1991).
Hence we only consider estimation on p = #,/6; instead of estimating R = P(X <Y).

Assume X3, Xo,...,X,, and Y1,Y5,...,Y,, be two independent samples from X and
Y with the densities in (2.1) with known a > 0, respectively, then we have the followings:

The MLE 6; of 8;, i = 1,2 are given by:

91 — X(m) = 'ma,X(Xl,Xg,...,Xm),
0 = Yy = max(¥:1,Y2,...,Y,).

The densities of 8; and 6, are given by

m

'97n-33m_1, 0<.’L’<91,
1

FX (o (T)

an
fyo, (@) = chm_l, 0 <z <6, respectively. (2.2)
2
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Table 2.1: MSE of the MLE and an unbiased estimator (units: p*)
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P
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p

B

o

10

10

2.13636

0.81500

0.11616

0.07556

0.02146

0.02094

0.01205

0.01113

0.01239

0.00899

20

0.11616

0.07556

0.02146

0.02094

0.02105

0.01113

0.01239

0.00897

0.01350

0.00849

30

0.03846

0.03278

0.01349

0.01348

0.01198

0.00953

0.01307

0.00862

0.01339

0.00840

20

10

2.37085

0.80409

0.13420

0.06909

0.01996

0.01480

0.00509

0.00506

0.00334

0.00293

20

0.13420

0.06909

0.01996

0.01480

0.00509

0.00506

0.00334

0.00293

0.00353

0.00243

30

0.04187

0.02657

0.00813

0.00741

0.00358

0.00347

0.00339

0.00256

0.00373

$.00234

30

10

2.46169

0.830188

0.14315

0.06778

0.02134

0.01356

0.00432

0.00382

0.00173

0.00170

20

0.14315

0.06778

0.02134

0.01356

0.00432

0.00382

0.00173

0.00170

0.00155

0.00120

30

0.04516

0.02531

0.00799

0.00617

0.00224

0.00223

0.00154

0.00133

0.00144

0.00111

From the densities (2.2), we obtain the k-moments of X, and 1/Y,,:

E (X{“m)) —

The MLE of p is given by:

m+k

m

9* and E

1

k
Yo

an

an — k

—k
05",

if an > k.

(2.3)

(2.4)

From the results (2.3) and (2.4), we obtain expectation and variance of the MLE p:

amn
E(p) = :
(7) (m+ 1)(an - 1) P
amn a’m?n? )
Var(p) = — : 2.5
ar(p) {(m+2)(an——2) (m+ 1)2(an — 1)2}p (2:5)
From expectation of the MLE in (2.5), we define an unbiased estimator of p by:
. (m+1)(an—1) Xim)
= amn Y
(n)
which has variance as:
N (m + 1)2(an — 1)? 5
= — 1 . 2.6
Var(p) { amn(m + 2)(an — 2) P (2.6)

From the results (2.5) and (2.6), Table 2.1 shows numerical values of mean squared

errors(MSE) of the MLE and an unbiased estimator.

From Table 2.1 we observe the following:

Fact 2. The unbiased estimator performs better than the MLE in a sense of MSE.

Next we consider a confidence interval for p . First thing the quantity @ = (1/p)(X(m)

/Y(n)) is a pivot quantity having the following density which doesn’t involve p:
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From Theorem 7(21) in Rohatgi (1976, p.141), the density of ) is obtained as:

( amn

m+aﬁfha if 0<z<l,
m—i—anx anTe, if z>1. -
\

From the density (2.7) of Q, we can obtain an confidence interval for p:
For0<1—p;—ps<1,p; >0an (1—p; —p2)100% confidence interval for p is given

as:
1 _1
((m—l—an )m (m+an ) “”)
D1 3 P2 »
an m

where p1(p2) is a lower (upper) probability of the density of @@ and any reall number p’s
are satisfying 0 < 1 —p; —pa < 1, p; > 0.

2.2. Ratio of random variables

Let X and Y be two independent uniform random variable and power function random
variable with the densities (2.1). Then, from Theorem 7(21) in Rohatgi and Rahtigi
(1976, p.141), the density of W = Y/X is given by: |

4 1
ail-pawa“l, if0<w<;,
Cfwwy={ 7 . (2.8)
w2, if w> -—.
L (@+1)p P

Let R = X/(X +Y) be a ratio of X-variates among (X + Y)-variates. Then R =
1/(1 + W) and hence, we obtain the density of ratio R by the density (2.8):

r o 1 , p
. <
e G- OIS
fR(T) = i o a—1 (29)
| e prl-7) if P <r<i
L a+1 poatl 7 1+p '

From the density (2.9) of the ratio R and the formula 6.6.1 in Abramowitz and Stegun
(1970, p.263), the k** moment of the ratio R = X/(X 4+ Y) is obtained by:

E(R*) = — ¢ _ atl — 2.10
(R = s A Bets (b4 1 =) + 677 Big (ak — )}, (2.10)

where B;(a,b) is the incomplete beta function of 0 < z < 1.

To evaluate numerical mean and variance of the ratio R, we simplify the following
incomplete beta function from the recursion formulas 15.1.3 & 15.1.8, 15.2.18 & 15.2.20
in Abramowitz and Stegun (1970, pp. 556-558). -



Reliability in Two Independent Uniform and Power Function-Half Normal Distribution 329
Table 2.2: Numerical values of mean and variance of the ratio R = X/(X +Y)
o p=1/4 p=1/2 p=2 p=4
mean variance mean variance mean variance mean variance
1/4 | 0.54066 0.12787 0.61570 0.11548 0.74494 0.09598 0.78697 0.09598
1/2 | 0.40244 0.09175 0.50994 0.08774 0.72365 0.06007 0.80772 0.04542
1 0.25491 0.04244 0.36920 0.05275 0.63080 0.05276 0.74508 0.04246
2 0.17125 0.01431 0.27631 0.02552 0.55261 0.04349 0.68500 0.04125
4 0.13511 0.00621 0.22969 0.01456 0.50400 0.03699 0.64510 0.03957
Lemma 2.1 ,
(a) B.(2, —1) = +z+In(l—z), 0<zx<l.
— X
332
(b) B2(3, —1) =2z{1+z 'In(1 —2)} — , O<z<l.
. — X

(¢) Bi—g(a, 1 —a) =a (1 —2)*F(a,0; a+1; 1 — ), and
Bi_(o,2—a)=a(1-2)*Fla-1,0a+1;1-2), 0<z<l.
where F'(a,b; c; ) is the hypergeometric function.

By Lemma 2.1 and the recursion formulas of the hypergeometric function in Abramo-
witz and Stegun (1970, p.558), Table 2.2 shows mean and variance of ratio R for p=1/4,
1/2,2,4and o= 1/4,1/2, 1, 2, 4.

From Table 2.2 we observe the followings:

Fact 3.

(a) Mean gets larger as the value of p gets larger, but variance gets smaller.

(b) Mean and variance get smaller as the value of « gets larger.

3. Uniform and Half-Normal

In this section, we consider the case for the estimation of P(Y < X) when (X, Y} is
a pair of uniform and half-normal random variables, respectively. As an application of
this case X, representing time to sustain temperature enduring a state of equilibrium,
is a uniform random variable and Y, representing a velocity of regular gas in a state of
equilibrium, is a half-normal random variable.

3.1. Reliability

Let X and Y be two independent uniform random variable and half-normal random
variable (see, Johnson et al., 1994; Woo, 2007a) with the following densities:

fX(a:)zé, 0<ax<8, 6>0,

fy (y) =\/7T—25-e‘%2‘5, 0<y, B>0.

From the densities (3.1), and formula 8.250(1) in Gradshteyn and Ryzhik (1965,
p.930), we obtain the reliability P(X < Y): |

(3.1)
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Fact 4. When X and Y are independent uniform random variable and a half-normal
random variable having the densities (2.1), then, for n = 6%/3,

REP(X<Y):\/gn_% (1-6—%‘)“-—@( 327-)

Where ®(z) = 2//7 [ e"t*dt.
Since 17 > 0, we get dR/dn < 0 and hence we obtain Fact 5:

Fact 5. R = P(X <Y) is a monotone decreasing function of 7.

3.2. Estimating reliability P(X <Y)

We now consider estimation on the reliability P(X < Y) when X and Y are inde-
pendent uniform random variable and half-normal random variable, respectively having
the densities (3.1). Because R = P(X < Y) is a monotone function of 1 in Fact 5 and
Remark, inference on the reliability is equivalent to inference on n (see, McCool, 1991).
Hence we only consider estimation on n = 6%/ instead of estimating R = P(X <Y).

Assume X1, X,,..., X, and Y1,Y,,...,Y, be two independent samples from X and
Y with the densities in (3.1), respectively, then we have the followings:

Let 62 and 3 be the MLE of 62 and (8, respectively. Then the MLE are given by:
. .1 <&
6% = X(Qm) = {max(X1,Xs,...,Xn)}* and (= - ZYf
=1

We need the following well-known results to evaluate expectation and variance of the
MLE:

Fact 6.

(a) >_7_,Y?/2 has a gamma distribution with the shape parameter n/2 and the
scale parameter (3.

(b) If Y has a gamma distribution with a shape o and a scale 3, then E(1/Y*) =
T(a-k)/(T(a)B%),ifa>k . |

From the result (2.3) and Fact 6 (a) & (b), we obtain the 1* and 27¢ moments of the
MLE 7 = 62/ = nX(Qm)/Z?’:l Y? of n = 62%/8.

E(7)

mn

T (m+2)(n - 2)

2
mn 5

(m+4)(n—2)(n-—4)n’ if n> 4. (3.3)

n, if n> 2, (3.2)

B() =

From expectation (3.2), an unbiased estimator 7 of n = 62/ is defined as:

(m+2)(n—2) X(m)z.

7
m
2
>,
i=1

= (3.4)
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Table 3.1: Table 3. MSE of the MLE # and an unbiased estimator 7 (unit: n?)
m 10 20

n 10 20 30 40 10 20 30 40

n 0.40476 0.14021 0.09933 0.08104 0.46338 0.13721 0.08217 0.06078
n 0.37143 0.15714 0.10769 0.08571 0.34444 0.13438 0.08589 0.06435
m 30 40

n 10 20 30 40 10 20 30 40

n 0.49449 0.14216 0.08189 0.05831 0.51299 0.14622 0.08306 0.05825
7 0.33856 0.12941 0.08115 0.05969 0.33636 0.12756 0.07937 0.05796
By the same method, we obtain the 2”¢ moment of 7 by:

. m+ 2)%(n - 2 ,
E(i*) = ( ) ) n°, if n> 4. (3.5)

m(m + 4)(n — 4)

From the results (3.2), (3.3) and (3.4), we obtain the following Table 3.1.
From Table 3.1, we observe the following:

Fact 7.

(a) The MLE and an unbiased estimator can’t dominate each other.

(b) The unbiased estimator performs better than the MLE in a sense of MSE,
especially if m = 40 and n = 10, 20, 30, 40.

From Fact 7(a), since the MLE % and an unbiased estimator 7 can’t dominate each
other, we can recommend the following estimator of n which is minimizing its mean
squared error:

At first, as we find a constant “d” such that E[(j—n)?] = E[(d-Xfm)/ S Y —n)?

is minimized, and hence, the estimator 7 which has the minimum MSE is recommended
by:

A _4) X2
T e ] ) i G I T VY (3.6)
(m + 2) 5
.Y,
1=1
which the proposed estimator ?’5 is represented by the MLE #:
:_(m+4)n-4) . .
= : f n>4. 3.7
y i (3.7)

By applying the MLE #, an asymptotic (1 — v)100% confidence interval of is given
by:

=5 'ﬁ\/(n—z>(n—4>(m+4> NCEPECEn

if n>4, (3.8)
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where f:ﬂ o(t)dt = v/2, ¢(t) is the standard normal density.
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