• Title/Summary/Keyword: statistical invariant

Search Result 65, Processing Time 0.023 seconds

A New Approach to Fingerprint Detection Using a Combination of Minutiae Points and Invariant Moments Parameters

  • Basak, Sarnali;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.421-436
    • /
    • 2012
  • Different types of fingerprint detection algorithms that are based on extraction of minutiae points are prevalent in recent literature. In this paper, we propose a new algorithm to locate the virtual core point/centroid of an image. The Euclidean distance between the virtual core point and the minutiae points is taken as a random variable. The mean, variance, skewness, and kurtosis of the random variable are taken as the statistical parameters of the image to observe the similarities or dissimilarities among fingerprints from the same or different persons. Finally, we verified our observations with a moment parameter-based analysis of some previous works.

The Limit Distribution and Power of a Test for Bivariate Normality

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.187-196
    • /
    • 2002
  • Testing for normality has always been a center of practical and theoretical interest in statistical research. In this paper a test statistic for bivariate normality is proposed. The underlying idea is to investigate all the possible linear combinations that reduce to the standard normal distribution under the null hypothesis and compare the order statistics of them with the theoretical normal quantiles. The suggested statistic is invariant with respect to nonsingular matrix multiplication and vector addition. We show that the limit distribution of an approximation to the suggested statistic is represented as the supremum over an index set of the integral of a suitable Gaussian Process. We also simulate the null distribution of the statistic and give some critical values of the distribution and power results.

THREE-DIMENSIONAL ALMOST KENMOTSU MANIFOLDS WITH η-PARALLEL RICCI TENSOR

  • Wang, Yaning
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.793-805
    • /
    • 2017
  • In this paper, we prove that the Ricci tensor of a three-dimensional almost Kenmotsu manifold satisfying ${\nabla}_{\xi}h=0$, $h{\neq}0$, is ${\eta}$-parallel if and only if the manifold is locally isometric to either the Riemannian product $\mathbb{H}^2(-4){\times}\mathbb{R}$ or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure.

Generalized One-Level Rotation Designs with Finite Rotation Groups Part I:Generatio of Designs

  • Park, You-Sung;Kim, Kee-Whan
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.29-44
    • /
    • 2000
  • In this paper, we consider one-level rotation designs with finite rotation groups such that the design satisfies two basic requirements: all rotation groups are included in any given survey period, and overlapping rates depend only on the time lag. First we present the necessary number of rotation groups and a rule for the length of time the sample units are to be in or out of the sample to satisfy the requirements. Second, an algorithm is presented to put rotation groups to proper positions in a panel in order to include all finite rotation groups for any survey period. Third, we define an one-level rotation pattern which is invariant in the survey period and has useful properties in practical sense.

  • PDF

Optimal Minimum Bias Designs for Model Discrimination

  • Park, Joong-Yang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.339-351
    • /
    • 1998
  • Designs for discriminating between two linear regression models are studied under $\Lambda$-type optimalities maximizing the measure for the lack of fit for the designs with fixed model inadequacy. The problem of selecting an appropriate $\Lambda$-type optimalities is shown to be closely related to the estimation method. $\Lambda$-type optimalities for the least squares and minimum bias estimation methods are considered. The minimum bias designs are suggested for the designs invariant with respect to the two estimation methods. First order minimum bias designs optimal under $\Lambda$-type optimalities are then derived. Finally for the case where the lack of fit test is significant, an approach to the construction of a second order design accommodating the optimal first order minimum bias design is illustrated.

  • PDF

2D Shape Recognition System Using Fuzzy Weighted Mean by Statistical Information

  • Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.49-54
    • /
    • 2009
  • A fuzzy weighted mean method on a 2D shape recognition system is introduced in this paper. The bispectrum based on third order cumulant is applied to the contour sequence of each image for the extraction of a feature vector. This bispectral feature vector, which is invariant to shape translation, rotation and scale, represents a 2D planar image. However, to obtain the best performance, it should be considered certain criterion on the calculation of weights for the fuzzy weighted mean method. Therefore, a new method to calculate weights using means by differences of feature values and their variances with the maximum distance from differences of feature values. is developed. In the experiments, the recognition results with fifteen dimensional bispectral feature vectors, which are extracted from 11.808 aircraft images based on eight different styles of reference images, are compared and analyzed.

  • PDF

Rao-Wald Test for Variance Ratios of a General Linear Model

  • Li, Seung-Chun;Huh, Moon-Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1999
  • In this paper we propose a method to test $\textit{H}$:$\rho_i$=$\gamma_i$ for 1$\leq$$\textit{i}$$\leq$$\ell$ against $\textit{K}$:$\rho_i$$\neq$$\gamma_i$ for some iin k-variance component random or mixed linear model where $\rho$i denotes the ratio of the i-th variance component to the error variance and $\ell$$\leq$K. The test which we call Rao-Wald test is exact and does not depend upon nuisance parameters. From a numerical study of the power performance of the test of the interaction effect for the case of a two-way random model Rao-Wald test was seen to be quite comparable to the locally best invariant (LBI) test when the nuisance parameters of the LBI test are assumed known. When the nuisance parameters of the LBI test are replaced by maximum likelihood estimators Rao-Wald test outperformed the LBI test.

  • PDF

Color Segmentation robust to Illumination Variations based on Statistical Methods of Hue and Saturation including Brightness (밝기 변화를 고려한 색상과 채도의 확률 모델에 기반한 조명변화에 간인한 컬러분할)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hagbae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.604-614
    • /
    • 2005
  • Color segmentation takes great attentions since a color is an effective and robust visual cue for characterizing one object from other objects. Color segmentation is, however, suffered from color variation induced from irregular illumination changes. This paper proposes a reliable color modeling approach in HSI (Hue-Saturation-Intensity) rotor space considering intensity information by adopting B-spline curve fitting to make a mathematical model for statistical characteristics of a color with respect to brightness. It is based on the fact that color distribution of a single-colored object is not invariant with respect to brightness variations even in HS (Hue-Saturation) plane. The proposed approach is applied for the segmentation of human skin areas successfully under various illumination conditions.

The Ultrasound Image Diagnosis using Statistical Characteristics and Neural Network (통계적 특성과 신경망을 이용한 초음파 화상진단)

  • Hong, Jeong-Woo;Kim, Sun-Il;Lee, Doo-Soo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.26-28
    • /
    • 1992
  • Texture analysis, one of the mage processing techniques, using statistical characteristics is applied to the ultrasound images, which are then classified into each types through neural network. This is a method to be used to diagnose ultrasound images automatically and objectively. First tone kinds of texture analysis techniques proposed already are used to classify ultrasound images and compared in terms of classification rate, and then a new technique if proposed which is invariant to multiplicative gain changes and image resolution.

  • PDF

On a Stopping Rule for the Random Walks with Time Stationary Random Distribution Function

  • Hong, Dug-Hun;Oh, Kwang-Sik;Park, Hee-Joo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.293-301
    • /
    • 1995
  • Sums of independent random variables $S_n = X_1 + \cdots + X_n$ are considered, where the $X_n$ are chosen according to a stationary process of distributions. For $c > 0$, let $t_c$ be the smallest positive integer n such that $$\mid$S_n$\mid$ > cn^{\frac{1}{2}}$. In this set up we are concerned with finiteness of expectation of $t_c$ and we have some results of sign-invariant process as applications.

  • PDF