Journal of the Korean Statistical Society Vol. 24, No. 2, 1995

On a Stopping Rule for the Random Walks with Time Stationary Random Distribution Function

Dug Hun Hong¹, Kwang Sik Oh¹, and Hee Joo Park²

ABSTRACT

Sums of independent random variables $S_n = X_1 + \cdots + X_n$ are considered, where the X_n are chosen according to a stationary process of distributions. For c > 0, let t_c be the smallest positive integer n such that $|S_n| > cn^{\frac{1}{2}}$. In this set up we are concerned with finiteness of expectation of t_c and we have some results of sign-invariant process as applications.

KEYWORDS: Stopping rule, Random walks, Random distribution function, Stationarity, Ergodicity.

1. INTRODUCTION

Let \mathcal{F} be a set of distributions on \mathcal{R}^1 with the topology of weak convergence, and let \mathcal{A} be the σ -field generated by the open sets. We denote by \mathcal{F}_1^{∞} the space consisting of all infinite sequence (F_1, F_2, \ldots) , $F_n \in \mathcal{F}$ and \mathcal{R}_1^{∞} the space consisting of all infinite sequences (x_1, x_2, \ldots) of real numbers. Take the σ -field

¹Department of Statistics, Catholic University of Taegu-Hyosung, Kyungbuk, 713–702, Korea.

²Department of Computer, Kyungpook Sanup University, Taegu, 701-702, Korea.

 \mathcal{A}_1^{∞} to be the smallest σ -field of subsets of \mathcal{F}_1^{∞} containing all finite dimensional rectangles and take \mathcal{B}_1^{∞} to be the Borel σ -field of \mathcal{R}_1^{∞} . Let $\omega = (F_1^{\omega}, F_2^{\omega}, \ldots)$ be the coordinate process in \mathcal{F}_1^{∞} and ν its distribution on \mathcal{A}_1^{∞} . Let θ be the coordinate shift: $\theta^k(\omega) = \omega'$ with $F_n^{\omega'} = F_{n+k}^{\omega}$, $k = 1, 2, \ldots$ On $(\mathcal{R}_1^{\infty}, \mathcal{B}_1^{\infty})$ we also define the shift transformation $\sigma : \mathcal{R}_1^{\infty} \to \mathcal{R}_1^{\infty}$ by $\sigma(x_1, x_2, \ldots) = (x_2, x_3, \ldots)$. ν is called stationary if for every $A \in \mathcal{A}_1^{\infty}, \nu(\theta^{-1}(A)) = \nu(A)$ and we let π be its marginal distribution.

Let \mathcal{J} be the σ -field of invariant sets in \mathcal{A}_1^{∞} , that is, $\mathcal{J} = \{A | \theta^{-1}(A) = A, A \in \mathcal{A}_1^{\infty}\}$ and let \mathcal{I} be the σ -field of invariant sets in \mathcal{B}_1^{∞} , that is, $\mathcal{I} = \{B | \sigma^{-1}(B) = B, B \in \mathcal{B}_1^{\infty}\}$. For each ω define a probability measure P_{ω} on $(\mathcal{R}_1^{\infty}, \mathcal{B}_1^{\infty})$ so that $P_{\omega} = \prod_{i=1}^{\infty} F_i^{\omega}$. A monotone class argument shows that $P_{\omega}(B), B \in \mathcal{B}_1^{\infty}$, is \mathcal{A}_1^{∞} -measurable as a function of ω . So we can define a new probability measure such that $P(B) = \int P_{\omega}(B)\nu(d\omega)$. Define the process $\{X_n\}$ on $(\mathcal{R}_1^{\infty}, \mathcal{B}_1^{\infty})$ such that $X_n(x_1, x_2, \ldots) = x_n$ and set $S_n = X_1 + X_2 + \cdots + X_n$. By the definition of $P_{\omega}, \{X_n\}$ are independent with respect to P_{ω} and we also note that $\{X_n\}$ is a sequence of independent and identically distributed random variables when \mathcal{F} has just one element. For c > 0, let t_c be the smallest positive integer n such that $|S_n| > cn^{\frac{1}{2}}(=\infty)$ if no such that n exist). Our principal aim is to prove the following:

Theorem 1. Let $\mathcal{F} = \{F | \int x dF(x) = 0\}$ and let ν be stationary and ergodic with $\iint x^2 dF(x)\pi(dF) = 1$. Then

$$E_{\omega}(t_c) = \int t_c dP_{\omega} < \infty$$
 ν -a.e. ω

if $0 \le c < 1$.

Special case of the theorem has appeared previously. Blackwell and Freedman (1964) have treated the "coin-tossing" case in which $X_k, k \geq 1$, are symmetric and assume the values ± 1 . Many other extensions of Blackwell and Freedman's results have appeared in Chow, Robbins and Teicher(1965) and Gundy and Siegmund(1968). We also treat the case of infinite variance. Re-

sults can be applied to sign-invariant random variables.

2. PROOF AND RELATED RESULTS

We fix c and may dispense with it as a subscript in the sequal. In what follows, we deal with the sequence of the stopping rules $\tau = \tau(n) = \min(t, n), n \ge 1$.

We need the following two lemmas.

Lemma 1. Under the conditions of Theorem 1, we have for ν -a.e. ω

$$\lim_{n \to \infty} n^{-1} \sum_{k=1}^{n} \int_{\{X_{k}^{2} > \epsilon n\}} X_{k}^{2} dP_{\omega} = 0$$

for every $\epsilon > 0$.

Proof. By the ergodic theorem, we have for ν -a.e. ω

$$n^{-1} \sum_{k=1}^{n} \int_{\{X_{k}^{2} > M\}} X_{k}^{2} dP_{\omega}$$

$$= n^{-1} \sum_{k=1}^{n} \int_{\{x^{2} > M\}} x^{2} dF_{k}^{\omega}(x)$$

$$\to \iint_{\{x^{2} > M\}} x^{2} dF(x) \pi(dF).$$

Let $X_M(\omega) = \int_{\{x^2 > M\}} x^2 dF_1^{\omega}(x)$, then $X_M(\omega) \to 0$ ν -a.e. ω as $M \to \infty$ by the dominated convergence theorem. Since for any M > 0

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{k=1}^{n} \int_{\{X_{k}^{2} > \epsilon_{n}\}} X_{k}^{2} dP_{\omega} \le \overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{k=1}^{n} \int_{\{X_{k}^{2} > M\}} X_{k}^{2} dP_{\omega} = EX_{M},$$

by letting M go to ∞ , right hand side of above goes to 0 by the dominated convergence theorem which proves the lemma.

The following lemma is due to Chow, Robbins and Teicher (1965).

Lemma 2. Let $Y_1, Y_2, ...$ be independent with $EY_n = 0, EY_n^2 = \sigma_n^2 < \infty (n \ge 1)$ and set $S_n = \sum_{k=1}^n Y_k$. Then if t is a stopping rule, $E \sum_{k=1}^t \sigma_k^2 < \infty$ implies that $ES_t^2 = E \sum_{k=1}^t \sigma_k^2$.

Lemma 3. Suppose that there exists a ω such that

$$\lim_{n \to \infty} n^{-1} \sum_{k=1}^{n} \int X_k^2 dP_{\omega} = 1 \quad \text{and} \quad \int t dP_{\omega} = \infty.$$

Then there exist positive real numbers α , β and positive integer N such that

$$0 < \alpha E_{\omega} \tau \le E_{\omega} X_{\tau}^2 \le \beta E_{\omega} \tau$$
, for all $n \ge N$.

Proof. Since $\lim_{n\to\infty} n^{-1} \sum_{k=1}^n \int X_k^2 dP_\omega = 1$, ν -a.e. ω by ergodic theorem, for given $\epsilon > 0$ there exist M such that

$$1 + \epsilon \ge n^{-1} \sum_{k=1}^{n} \int X_k^2 dP_{\omega} \ge 1 - \epsilon$$
, for all $n \ge M$.

Then for m > M,

$$E_{\omega}\tau(m) = E_{\omega} \sum_{k=1}^{\tau(m)} 1$$

$$= E_{\omega} \left(\sum_{k=1}^{\tau(m)} 1\right) \left(I\{t \leq M\}\right) + E_{\omega} \left(\sum_{k=1}^{\tau(m)} 1\right) \left(I\{t > M\}\right)$$

$$\leq M + \frac{1}{1+\epsilon} E_{\omega} \sum_{k=1}^{\tau(m)} \int X_k^2 dP_{\omega}$$

$$= M + \frac{1}{1+\epsilon} E_{\omega} S_{\tau}^2,$$

where the last equality comes from Lemma 2. Noting that $E_{\omega}t = \infty$ implies $\lim_{m\to\infty} E_{\omega} \sum_{k=1}^{\tau(m)} \int X_k^2 dP_{\omega} = \infty$, we can choose γ and N_1 such that for all $n \geq N_1$

$$0 < \gamma E_{\omega} \tau \le E_{\omega} S_{\tau}^2$$
 and $\gamma > c^2$.

Putting $\gamma^2 = \frac{E_{\omega}X_{\tau}^2}{E_{\omega}\tau}$, we have $0 \leq (c^2 - \gamma) + 2c\gamma + \gamma^2$. An examination of this expression as a quadratic form in τ leads to the inequality $(\sqrt{\tau} - c)^2 \leq E_{\omega}X_{\tau}/E_{\omega}\tau$ for $n \geq N_1$. On the other hand

$$E_{\omega}X_{\tau}^{2} \leq E_{\omega}\sum_{k=1}^{\tau}X_{k}^{2}$$

$$= E_{\omega}\left(\sum_{k=1}^{\tau}X_{k}^{2}\right)\left(I\{\tau \leq M\}\right) + E_{\omega}\left(\sum_{k=1}^{\tau}X_{k}^{2}\right)\left(I\{\tau > M\}\right)$$

$$\leq K + (1+\epsilon)E_{\omega}\sum_{k=1}^{\tau}1$$

$$= K + (1+\epsilon)E_{\omega}\tau$$

for some $K < \infty$. Using the fact $\lim_{n\to\infty} E_{\omega}\tau = \infty$, we can choose β and N_2 such that $E_{\omega}X_{\tau}^2 \leq \beta E_{\omega}\tau$ for all $n \geq N_2$. Taking N to be $\max\{N_1, N_2\}$ completes the proof.

Proof of the Theorem 1. By the ergodic theorem we have for ν -a.e. ω that $\lim_{n\to\infty} n^{-1} \sum_{k=1}^n \int X_k^2 dP_\omega = 1$. Now suppose that $\nu\{\omega|E_\omega t < \infty\} < 1$, then by Lemma 1 and 3, we can choose ω such that $0 < \alpha E_\omega \tau \le E_\omega X_\tau^2 \le \beta E_\omega \tau, n = N, N+1, \ldots$, for some α, β and N and $\lim_{n\to\infty} n^{-1} \sum_{k=1}^n \int_{\{X_k^2 > \epsilon n\}} X_k^2 dP_\omega = 0$. Now using the same method as in Theorem 1 of Gundy and Siegmund(1968), the theorem can be proved.

If the condition of ergodicity in Theorem 1 is dropped, then we have some ristriction on \mathcal{F} .

Theorem 2. Let $\mathcal{F} = \left\{ F | \int x dF(x) = 0 \text{ and } \int x^2 dF(x) = 1 \right\}$ and let ν be stationary. Then

$$E_{\omega}(au_c) = \int t_c dP_{\omega} < \infty$$
 u -a.e. ω

if $0 \le c \le 1$.

Proof. By the same method as in Lemma 1, we also have that for ν -a.e. $\omega \lim_{n\to\infty} n^{-1} \sum_{k=1}^n \int_{\{X_k^2 > \epsilon n\}} X_k^2 dP_\omega = 0$. Now the proof follows immediate from Theorem 1 of Gundy and Siegmund(1968).

Next we consider a result in the case of infinite variance. For each a > 0, $n = 1, 2, \ldots$, define

$$Y_n = Y_n(a) = X_n \mathbb{1}\{|X_n| \le an^{\frac{1}{2}}\}, \ T_n = Y_1 + \dots + Y_n$$

 $\beta_n^{\omega} = (E_{\omega}T_n)^2, \ B_n^{\omega} = \text{ variance of } T_n \text{ with respect to } P_{\omega}.$

Theorem 3. Let $0 < c < \infty$ and $\mathcal{F} = \{F | F \text{ is symmetric }\}$ and suppose that for some a > 2c. If ν is stationary and ergodic with $\iint x^2 dF(x)\pi(dF) = \infty$, then

$$E_{\omega}t < \infty$$
 ν -a.e. ω .

Proof. Since the X_k are symmetrically distributed and independent with respect to P_{ω} for all ω , $\limsup(\beta_n^{\omega}/B_n^{\omega}) = 0$. By Theorem 2 of Gundy and Siegmund(1968) it suffices to show that

$$\lim_{n \to \infty} n^{-1} B_n^{\omega} = \infty$$
 ν -a.e. ω .

Let M(>0) be given. Now choose T such that $\iint_{\{|x|\leq T\}} x^2 dF(x) \pi(dF) \geq M$. Then we have for ν -a.e. ω

$$n^{-1} \sum_{k=1}^{n} \int_{\{|x| \le a\sqrt{k}\}} x^{2} dF_{k}^{\omega}(x)$$

$$\geq n^{-1} \Big(\sum_{k=1}^{[T^{2}]-1} \int_{\{|x| \le a\sqrt{k}\}} x^{2} dF_{k}^{\omega}(x) + \sum_{k=[T^{2}]}^{n} \int_{\{|x| \le T\}} x^{2} dF_{k}^{\omega}(x) \Big)$$

$$= n^{-1} \sum_{k=1}^{[T^{2}]-1} \int_{\{|x| \le a\sqrt{k}\}} x^{2} dF_{k}^{\omega}(x) + \frac{n - [T^{2}]}{n} \frac{1}{n - [T^{2}]} \sum_{k=[T^{2}]}^{n} \int_{\{|x| \le T\}} x^{2} dF_{k}^{\omega}(x)$$

$$\longrightarrow \iint_{\{|x| \le T\}} x^{2} dF(x) \pi(dF) \geq M,$$

where the convergence above comes from ergodic theorem and $[\cdot]$ denote the biggest integer less than \cdot . Since M is arbitrary, the proof is completed.

Definition 1 (Berman(1962,1965)). Let $(\mathcal{R}_1^{\infty}, \mathcal{B}_1^{\infty}, \widehat{P})$ be a probability space. Then \widehat{P} is sign invariant if $\widehat{P}\{(x_1, x_2, \ldots) \in B\} = \widehat{P}\{(-1)^{\alpha_1}x_1, (-1)^{\alpha_2}x_2, \ldots) \in B\}$ for all $(\alpha_1, \alpha_2, \ldots) \in \{1, -1\}_1^{\infty}$ and for all $B \in \mathcal{B}_1^{\infty}$.

We denote δ_x by the distribution of point mass 1 at x.

Proposition 1. Let \widehat{P} be any sign invariant probability measure on $(\mathcal{R}_1^{\infty}, \mathcal{B}_1^{\infty})$. Then one can determine ν on \mathcal{F}_1^{∞} where $\mathcal{F} = \{\frac{1}{2}(\delta_y + \delta_{-y})|y \in \mathcal{R}^+ \cup \{0\}\}$ so that $\widehat{P} = P$, and \widehat{P}_k , the k-th marginal of \widehat{P} , is given by $\widehat{P}_k = \int F_k^{\omega} \nu(d\omega), k = 1, 2, \ldots$ Furthermore, if \widehat{P} is stationary (and ergodic) then ν is stationary (and ergodic).

Proof. Let $\mathcal{F} = \{\frac{1}{2}(\delta_y + \delta_{-y})|y \in \mathcal{R}^+ \cup \{0\}\}$. Define $\phi : \mathcal{R}_1^{\infty} \to \mathcal{F}_1^{\infty}$ by $\phi(x) = \omega = (\frac{1}{2}(\delta_{x_1} + \delta_{-x_1}), \frac{1}{2}(\delta_{x_2} + \delta_{-x_2}), \ldots)$ if $x = (x_1, x_2, \ldots)$. Now let $\nu = \hat{P} \circ \phi^{-1}$ and let $B = \{x|x_1 > t_1, \ldots, x_n > t_n\}, t_i \geq 0, i = 1, 2, \ldots, n$. Note that

$$P_{\omega}(B) = \begin{cases} \frac{1}{2^n} & \text{if } |x_i| > t_i, \ i = 1, 2, \dots, n, \\ 0 & \text{if not,} \end{cases}$$

and $\nu \left\{ \omega = \left(\frac{1}{2} (\delta_{x_1} + \delta_{-x_1}), \frac{1}{2} (\delta_{x_2} + \delta_{-x_2}), \ldots \right) \middle| |x_i| > t_i, i = 1, 2, \ldots, n \right\} = 2^n \widehat{P}(B).$ Then

$$P(B) = \int P_{\omega}(B)\nu(d\omega) = \frac{1}{2^n}2^n\widehat{P}(B) = \widehat{P}(B).$$

This proves the proposition.

Hence we have the following results as corollaries of Theorem 1 and Theorem 3.

Corollary 1. Let $\{X_n\}$ be sign-invariant and stationary ergodic with $EX_1^2 = 1$. Then for 0 < c < 1, we have

$$E[t_c||X_1|,|X_2|,\ldots]<\infty$$
 a.s.

Corollary 2. Let $\{X_n\}$ be sign-invariant and stationary ergodic with $EX_1^2 = \infty$. Then for $0 < c < \infty$, we have

$$E[t_c||X_1|,|X_2|,\ldots]<\infty$$
 a.s.

REFERENCES

- (1) Berman, S.M. (1962). An Extension of the Arc Sine Law. The Annals of Mathematical Statistics, 33, 681-684.
- (2) Berman, S.M. (1965). Sign-Invariant Ranom Variables and Stochastic Process with Sign-Invariant Increments. Transections of American Mathematical Society, 119, 216–243.
- (3) Blackwell, D. and Freedom, D. (1964). A Remark on the Coin-Tossing Game. The Annals of Mathematical Statistics, 35, 1345-1347.
- (4) Breiman, L. (1968). Probability. Addison-Wesley.
- (5) Chow, Y.S. and Teicher, H. (1966). On Second Moments of Stooping Rules. The Annals of Mathematical Statistics, 37, 388-392.
- (6) Chow, Y.S., Robbins, H., and Teicher, H. (1965). Moments of Randomly Stopped Sums. The Annals of Mathematical Statistics, 36, 789-799.
- (7) Gundy, R.F. and Siegmund, D. (1968). On a Stopping Rule and the Central Limit Theorem. The Annals of Mathematical Statistics, 39, 1915–1917.
- (8) Hong, D.H. (1990). Random Walks with Time Stationary Random Distribution Function. Ph.D. Thesis, Univ. of Minnesota.
- (9) Hong, D.H. and Kwon, J.S. (1993). An LIL for Random Walks with Time Stationary Random Distribution Function. Yokohama Mathematical Journal, 40, 115-120.

- (10) Hong, D.H. (1994). Tail Events for Random Walks with Time Stationary Random Distribution Function. Communications of Korean Mathematical Society, 9, 233-239.
- (11) Hong, D.H. (1995). Large Deviations for Random Walks with Time Stationary Random Distribution Function. *Journal of the Korean Mathematical Society*, **32**, 279–287.
- (12) Siegmund, D. (1969). The Variance of One-Sided Stopping Rules. The Annals of Mathematical Statistics, 40, 1074-1077.