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with Time Stationary Random Distribution
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ABSTRACT

Sums of independent random variables 5, = X, 4+ --- + X, are
considered, where the X, are chosen according to a stationary process
of distributions. For ¢ > 0, let ¢, be the smallest positive integer n
such that |S,| > e¢n?. In this set up we are concerned with finiteness of
expectation of ¢, and we have some results of sign-invariant process as

applications.
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1. INTRODUCTION

Let F be a set of distributions on R! with the topology of weak convergence,
and let A be the o-field generated by the open sets. We denote by F° the
space consisting of all infinite sequence (F, F3,...), F,, € F and R$® the space

consisting of all infinite sequences (z1, z,...) of real numbers. Take the o-field
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AS$° to be the smallest o-field of subsets of F7° containing all finite dimensional
rectangles and take B$° to be the Borel o-field of R{°. Let w = (FY, Fy,...)
be the coordinate process in F{° and v its distribution on Aj°. Let 6 be the
coordinate shift: 6%(w) = ' with F¥' = F¥ ., k = 1,2,.... On (R, BY)
we also define the shift transformation ¢ : R — R by o(z1,2,,...) =
(z2,3,...). v is called stationary if for every A € AP, v(671(A)) = v(A) and
we let m be its marginal distribution.

Let J be the o-field of invariant sets in A, that is, J = {A|071(A) =
A, A € A} and let T be the o-field of invariant sets in B{°, that is, 7 =
{Blc~}(B) = B,B € B$*}. For each w define a probability measure P,

on (R$°,B{°) so that P, = HF;" A monotone class argument shows that
1=1
P,(B),B € B{°, is A{°-measurable as a function of w. So we can define

a new probability measure such that P(B) = /Pw(B)I/(dw). Define the
process {X,} on (R, B{°) such that X,(zy,22,...) = z, and set S, =
X: 4+ Xy + - + X,,. By the definition of P,,{X,} are independent with
respect to P, and we also note that {X,} is a sequence of independent and
identically distributed random variables when F has just one element. For
¢ > 0, let . be the smallest positive integer n such that |S,| > cnz(= oo if no

such that n exist). Our principal aim is to prove the following :

Theorem 1. Let F = {F‘/wdF(x) = 0} and let v be stationary and
ergodic with // 22dF(z)n(dF) = 1. Then

E,(t.) = /tchw <00 v-a.e. w

if0<e<l.

Special case of the theorem has appeared previously. Blackwell and Freed-
man (1964) have treated the “coin-tossing” case in which X,k > 1, are sym-
metric and assume the values +1. Many other extensions of Blackwell and
Freedman’s results have appeared in Chow, Robbins and Teicher(1965) and

Gundy and Siegmund(1968). We also treat the case of infinite variance . Re-
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sults can be applied to sign-invariant random variables.

2. PROOF AND RELATED RESULTS

We fix ¢ and may dispence with it as a subscript in the sequal. In what fol-
lows, we deal with the sequence of the stopping rules r = 7(n) = min(t,n),n >
1.

We need the following two lemmas.

Lemma 1. Under the conditions of Theorem 1, we have for v-a.e. w

JL@OnIZ/ X2dP, = 0

X2>en)
for every ¢ > 0.

Proof. By the ergodic theorem, we have for v-a.e. w

n

! / X2dP,
kZ—_-:l {XZ>M} k

=n"! Z/ 22 dF¥(z)
k=1

{z2>M}

5 / /{ an e*dF (z)7(dF).

Let Xy (w) = /{ sioat) 2’dFyY(z), then Xp(w) — 0 v-ae. was M — oo by the

dominated convergence theorem. Since for any M > 0

lim — Z/X2>en} XkdP, < hm /X2>M} X2dP, = EXyy,

N=+00 ), n—>°°n

by letting M go to oo, right hand side of above goes to 0 by the dominated

convergence theorem which proves the lemma.

The following lemma is due to Chow, Robbins and Teicher(1965).



296 Dug Hun Hong, Kwang Sik Oh, and Hee Joo Park

Lemma 2. Let Y;,Ys,... be independent with EY, = 0,EY;? = ¢2 <

oo(n > 1) and set S, = 37, Yi. Then if ¢ is a stopping rule, EY %, 0} < o0
implies that ES? = EY{_, ol

Lemma 3. Suppose that there exists a w such that

lim n7! Z/X,fde =1 and /thw = 0o.
k=1

n—00

Then there exist positive real numbers «, £ and positive integer N such

that
0<aE,7r <E,X*<BE,r, forall n>N.

Proof. Since lim n™! Z/ X?dP, =1, v-a.e. w by ergodic theorem, for
k=1

n—oo

given € > 0 there exist M such that

1+62n—1Z/dePw21—e, forall n> M.
k=1

Then for m > M,

E,r(m) = E'ng)l
7(m) 7(m)
= Ew(g ) (1{t < M}) + Ew(E; 1) (I{t > M})

IN

1 r(m)
M+ ——FE, /XQde
1+e¢ 1; k

1
_ M+—Bs
I+e€
where the last equality comes from Lemma 2. Noting that £t = oo implies

m—0Q

(m)
im FE, Z /X,fde = 0o, we can choose v and Ny such that for all n > N;
k=1

0<yE,7<E,S* and ~>c
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Putting v* = Egﬁﬁ, we have 0 < (¢ — v) + 2¢y + 7% An examination of

this expression as a quadratic form in 7 leads to the inequality (/7 — ¢)? <
E,X;/E,7 for n > N;. On the other hand

E,X? < E,3 X2
k=1

- & (z X2) (17 < MY) + B (3 X2) (1{r > M)

k=1
< K+(1+€¢E, Y 1
k=1

= K+(1+6&E,7

for some K < oo. Using the fact lim,. E,7 = oo, we can choose 3 and
N such that E,X? < BE,7 for all n > N,. Taking N to be max{N;, N,}

completes the proof.

Proof of the Theorem 1. By the ergodic theorem we have for v-a.e. w

that lim n™! Z/X,fde = 1. Now suppose that v{w|E,t < co} < 1, then
k=1

n—oc

by Lemma 1 and 3, we can choose w such that 0 < ¢E,7 < E,X? < BE,T,n =

N,N +1,..., for some o, and N and lim n~! Z/{ﬁ }X,fde = 0. Now
n—00 k:l k>cn

using the same method as in Theorem 1 of Gundy and Siegmund(1968), the

theorem can be proved.

If the condition of ergodicity in Theorem 1 is dropped, then we have some

ristriction on F.

Theorem 2. Let F = {F[/a:dF(:c) =0 and /deF(:z:) = 1} and let v
be stationary. Then

E,(r) = /thPw <00 v-ae w

ifo<e<.
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Proof. By the same method as in Lemma 1, we also have that for v-a.e.

w lim n7! Z /{ }Xde 0. Now the proof follows immediate from
X >en

n—+0o

Theorem 1 of Gundy and Siegmund(1968).

Next we consider a result in the case of infinite variance. For each a > 0,

n=12,..., define
Y, = Ya(a) = X 1{|X,| Sani}, T.=Yi+-- + Y,

By = (E,T, 2 B“ = variance of T, with respect to P,.
n n P

Theorem 3. Let 0 < ¢ < co and F = {F|F is symmetric } and suppose
that for some a > 2c¢. If v is stationary and ergodic with // 2 dF(z)m(dF) =

oo, then
E t<oco v-ae w.

Proof. Since the X; are symmetrically distributed and independent with
respect to P, for all w, limsup(8¥/B¥) = 0. By Theorem 2 of Gundy and
Siegmund(1968) it suffices to show that

limn_lB“’ =00 Vv-a.e. w.

Let M(> 0) be given. Now choose T such that el<T) z?dF (z)n(dF) > M.
z|<T
Then we have for v-a.e. w
n~! ; / z2dFY(z
El {lzl<aV} ¥(@)
22 dFY(
Z /|x|<a\f} kz[zz"z] /|z|<T} i ))
[T2] 1 . TZ] 1 n
n~t FY(z) + n | / z¥dF¥(z
Z '/|I|<a\/—} ( ) n n-— [T2] kzz[;z] {l=|<T} k( )

— / /{ e 22 dF (z)r(dF) > M,
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where the convergence above comes from ergodic theorem and [] denote the

biggest integer less than -. Since M is arbitrary, the proof is completed.

Definition 1 (Berman(1962,1965)). Let (R, 55°, P) be a probabil-
ity space. Then P is sign invariant if P{(zq,2,,...) € B} = P{(~1)*1zy,
(—1)%2x2,,...) € B} for all (a1, @,...) € {1,—1}{° and for all B € B{*.

We denote §, by the distribution of point mass 1 at z.

Proposition 1. Let P be any sign invariant probability measure on
(R$°,B3¢). Then one can determine v on F{° where F = {7(6, + 6_,)|y €
R+ U {0}} so that P = P, and B, the k-th marginal of P, is given by P, =
/F,:’u(dw), k=1,2,.... Furthermore, if Pis stationary (and ergodic) then v

1s stationary (and ergodic).

Proof. Let F = {J(6, + 6_)ly € R U {0}}. Define ¢ : R® — Fy°
by ¢(z) = w = (3(8z, + 6-2,), 5(6a; +6-2,),...) if £ = (21,22,...). Now let
v=~Po¢ ! andlet B = {zlzy > t1,...,2q >t },t; 20,2 =1,2,...,n. Note

that

= if |z > t,i=1,2,...,n,

=<2

F.(B) {0 if not,

and v{w = (§(85,+6-2,), 2(Ea,+6_a,),. . ||zl > tii = 1,2,...,n} = 2 P(B).
Then

P(B) = [ P.(B)v(dw) = %Z"ﬁ(B) - B(B).

This proves the proposition.

Hence we have the following results as corollaries of Theorem 1 and Theo-

rem 3.

Corollary 1. Let {X,} be sign-invariant and stationary ergodic with
EX? =1. Then for 0 < ¢ < 1, we have

E[tc

1X1],1Xa],.. ] <00 as.
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Corollary 2. Let {X,} be sign-invariant and stationary ergodic with
EX? = oo. Then for 0 < ¢ < oo, we have

Elt|I X, | Xal,...| < oo as.
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