• Title/Summary/Keyword: static design

Search Result 3,384, Processing Time 0.04 seconds

Design and Implementation of Portable Electrostatic Meter Applicable to Industrial Site (산업 현장에 적용할 수 있는 휴대형 정전기 측정기 설계 및 구현)

  • Jang, Mun-Seok;Lee, Eung-Hyuk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.971-977
    • /
    • 2020
  • In this paper, We propose a portable electrostatic meter which can measure high voltage static electricity caused by friction to prevent fire or explosion accidents in grinding, crushing, power injection, transport, filling, dust removal, painting, and foreign matter removal processes. The proposed device not only shows static electricity strength in 4 steps with respect to distance and voltage but also gives warning with a buzzer, on process facilities that are likely to generate high voltage static electricity due to friction. The device is implemented by filtering the signal detected by the wireless antenna, amplifying the signal by 6 times, and passing the signal through the integrator circuit. Tests are carried out with an electrostatic discharge simulator. And the results show that 4 LEDs are turned on at the distance of 10cm, 3 LEDs at 12cm, 2 LEDs at 13cm, and 1 LED at 15cm, when a fixed voltage of 500V is given. And also, the tests show that the static electricity can be detected at 5cm on 100V, 10cm on 200V, 15cm on 500V, 20cm on 1000V, and 25cm on 1500V. We expect to reduce accidents caused by static electricity by allowing safety managers on fields where fire or explosion accidents can happen to monitor static electricity.

Analysis of Interrelationship between Undrained Static and Cyclic Shear Behavior for Nak-Dong River Sand (낙동강 모래의 비배수 정적 및 반복 전단거동 상호관계 분석)

  • Kim, Dae-Man;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.151-163
    • /
    • 2006
  • This paper presents the interrelationship between undrained static and cyclic shear behavior. Laboratory works were performed through the undralned static and cyclic triaxial test using Nak-Dong River sand. And static triaxial test involved the triaxial extension test for comparison with cyclic shear behavior Cyclic triaxial test was performed with a variety of combination conditions of initial static shear stress $(q_{st})$ and cyclic stress $(q_{cy})$. In this result, the stress path of cyclic shear behavior was correspondent with static shear behavior passing the critical stress ratio (CSR) line because of the development of flow deformation. After that, a failure occurred according to failure line (FL) of static shear behavior. The stress path of cyclic shear behavior showed essentially the same with static shear behavior, although it appears a little different in test method.

Player Adaptive GMM-based Dynamic Game Level Design (플레이어 적응형 GMM 기반 동적 게임 레벨 디자인)

  • Lee, Sang-Kyung;Jung, Kee-Chul
    • Journal of Korea Game Society
    • /
    • v.6 no.1
    • /
    • pp.3-10
    • /
    • 2006
  • In computer games, the level design and balance of characters are the key features for developing interesting games. Level designers make decision to change the parameters and opponent behaviors in order to avoid the player getting extremely frustrated with the improper level. Generally, opponent behavior is defined by static script, this causes the games to have static difficulty level and static environment. Therefore, it is difficult to keep track of the user playing interest, because a player can easily adapt to changeless repetition. In this paper, we propose a dynamic scripting method that able to maintain the level designers' intention where user enjoys the game by adjusting the opponent behavior while playing the game. The player's countermeasure pattern for dynamic level design is modeled using a Gaussian Mixture Model (GMM). The proposed method is applied to a shooting game, and the experimental results maintain the degree of interest intended by the level designer.

  • PDF

Seismic performance of a wall-frame air traffic control tower

  • Moravej, Hossein;Vafaei, Mohammadreza;Abu Bakar, Suhaimi
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.463-482
    • /
    • 2016
  • Air Traffic Control (ATC) towers play significant role in the functionality of each airport. In spite of having complex dynamic behavior and major role in mitigating post-earthquake problems, less attention has been paid to the seismic performance of these structures. Herein, seismic response of an existing ATC tower with a wall-frame structural system that has been designed and detailed according to a local building code was evaluated through the framework of performance-based seismic design. Results of this study indicated that the linear static and dynamic analyses used for the design of this tower were incapable of providing a safety margin for the required seismic performance levels especially when the tower was subjected to strong ground motions. It was concluded that, for seismic design of ATC towers practice engineers should refer to a more sophisticated seismic design approach (e.g., performance-based seismic design) which accounts for inelastic behavior of structural components in order to comply with the higher seismic performance objectives of ATC towers.

Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization (고고도 장기체공 항공기 날개의 다목적 최적화를 이용한 공력-구조 동시 설계)

  • Kim, Jeong-Hwa;Jun, Sang-Ook;Hur, Doe-Young;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • In this study, simultaneous aero-structural design was performed for HALE aircraft wing. The span and the shape of main spar were considered as design variables. To maximize aerodynamic performance and to minimize weight, multi-objective optimization was used. Nonlinear static aeroelastic analysis was performed to compute large deflection of wing. Design of experiment and response surface method were used to reduce computation cost in the design process. Also, aerodynamic performances of deformed wing and rigid wing were compared.

Structural Design of a Front Lower Control Arm Considering Durability (내구성을 고려한 하부 컨트롤 암의 구조설계)

  • Park, Han-Seok;Kim, Jong-Kyu;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.69-75
    • /
    • 2009
  • Recently developed automotive components are getting lighter providing a higher fuel efficiency and performance. Following the current trend, this study proposes a structural optimization method for the lower control arm installed at the front side of a Vehicle. Lightweight design of lower control arm can be achieved through design and material technology. In this research, the shape of lower control arm was determined by applying the optimization technology and aluminum was selected as a steel-substitute material. Strength performance is the most important design requirement in the structural design of a control arm. This study considers the static strength in the optimization process. For the optimum design, the durability analysis is performed to predict its fatigue life. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by the in-house program, EXCEL-Kriging. Also, based on the optimum model obtained for the static strength, the optimization of Index of Fatigue Durability is carried out to get th optimum fatigue performance.

  • PDF

A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam (베트남 연약지반에서의 현장타설말뚝 설계 사례)

  • Seo, Won-Seok;Cho, Sung-Han;Choi, Ki-Byung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF

A Study on Development for Wind Turbine Rotor Hub using Design of Shape Optimization (형상 최적설계법을 이용한 풍력발전기 로터 허브 개발에 관한 연구)

  • Kim, Young-Il;Moon, Sung-Young;Lee, Ji-Hyun;Lee, Yun-Sung;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • Wind turbine frame will be required to be longer, lighter, more reliable and more consistent. Therefore it is necessary to lose weight of the wind turbine hub. Light-weight Design of a wind turbine is required to be at least 20 years. Therefore, this paper investigates the development for wind turbine rotor hub using design of topology optimization. The model is a pitch regulated wind turbine with three rotor blades where the main frame is made of nodular iron. For optimization, calculating stresses based on displacements and based on these data to carry out a verification of static and fatigue strength carried out. For this verification, two kind of analysis is used. One is static analysis and the other is fatigue analysis. Then the rotor hub of wind turbine frame is optimized using topology method.

A Study on Piezoresistive Characteristics of Smart Nano Composites based on Carbon Nanotubes for a Novel Pressure Sensor (압력센서 개발을 위한 탄소 나노 튜브 기반 지능형 복합소재 전왜 특성 연구)

  • Kim, Sung Yong;Kim, Hyun Ho;Choi, Baek Gyu;Kang, In Hyuk;Lee, Ill Yeong;Kang, In Pil
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.

MPSoC Design Space Exploration Based on Static Analysis of Process Network Model (프로세스 네트워크 모델의 정적 분석에 기반을 둔 다중 프로세서 시스템 온 칩 설계 공간 탐색)

  • Ahn, Yong-Jin;Choi, Ki-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.7-16
    • /
    • 2007
  • In this paper, we introduce a new design environment for efficient multiprocessor system-on-chip design space exploration. The design environment takes a process network model as input system specification. The process network model has been widely used for modeling signal processing applications because of its excellent modeling power. However, it has limitation in predictability, which could cause severe problem for real time systems. This paper proposes a new approach that enables static analysis of a process network model by converting it to a hierarchical synchronous dataflow model. For efficient design space exploration in the early design step, mapping application to target architectures has been a crucial part for finding better solution. In this paper, we propose an efficient mapping algorithm. Our mapping algorithm supports both single bus architecture and multiple bus architecture. In the experiments, we show that the automatic conversion approach of the process network model for static analysis is performed successfully for several signal processing applications, and show the effectiveness of our mapping algorithm by comparing it with previous approaches.