Browse > Article
http://dx.doi.org/10.5139/JKSAS.2010.39.1.50

Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization  

Kim, Jeong-Hwa (서울대학교 기계항공공학부 대학원)
Jun, Sang-Ook (서울대학교 기계항공공학부, 항공우주신기술연구소)
Hur, Doe-Young (서울대학교 기계항공공학부 대학원)
Lee, Dong-Ho (서울대학교 기계항공공학부, 항공우주신기술연구소)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.39, no.1, 2011 , pp. 50-55 More about this Journal
Abstract
In this study, simultaneous aero-structural design was performed for HALE aircraft wing. The span and the shape of main spar were considered as design variables. To maximize aerodynamic performance and to minimize weight, multi-objective optimization was used. Nonlinear static aeroelastic analysis was performed to compute large deflection of wing. Design of experiment and response surface method were used to reduce computation cost in the design process. Also, aerodynamic performances of deformed wing and rigid wing were compared.
Keywords
HALE; static aeroelasticity; Design Optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 김정화, 전상욱, 김병곤, 전용희, 이동호, "VMT Method와 Dynamic Mesh를 이용한 항공기 날개의 정적 공탄성 해석", 한국항공우주학회 추계학술발표회 논문집, 2006, pp. 69-72.
2 Atkinson, A. C. and Donev, A. N., "Optimum Experimental Design", Oxford University Press, New York, 1992.
3 Myers, R. H. and Montgomery, D. C., "Response Surface Methodology", 1st Ed., John Wiley & Sons, New York, 1995.
4 Koch, P. N., Mavris, D. and Mistree, F. "Multi-Level, Partitioned Responses for Modeling Complex Systems", 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 1998-4958, 1998.
5 유재한, 임인규, 이인, "큰 가로세로비를 가지는 날개의 대변형 효과를 고려한 비선형 정적 공탄성 해석", 한국항공우주학회지, 제34권 3호, 2006, pp. 31-36.   과학기술학회마을   DOI   ScienceOn
6 Yang, G., Chen, D. and Cui, K., "Response Surface Technique for Static Aeroelastic Optimization on a High-Aspect-Ratio Wing", Journal of Aircraft, Vol. 46, 2009, pp. 1444-1450.   DOI   ScienceOn
7 Kim, Y., Jeon. Y.-H. and Lee, D.-H., "Multi-Objective and Multidisciplinary Design Optimization of Supersonic Fighter Wing", Journal of Aircraft, Vol. 43, 2006, pp. 817-824.   DOI   ScienceOn
8 Hoffmann, K. A. and Chang, T., "Computational Fluid Dynamics", 4th Ed., Engineering Education System, Kansas, 2000.
9 Zienkiewicz, O. C., and Taylor, R. L. "The Finite Element Method", 4th Ed., McGraw-Hill, New York, 1991.
10 van Schoor, M. C. and von Flotow, A. H. "Aeroelastic Characteristics of a Highly Flexible Aircraft", Journal of Aircraft, Vol. 27, 1990, pp. 901-908.   DOI
11 Tang, D. M. and Dowell, E. H. "Experimental and Theoretical Study on Aeroelastic Response of High-Aspect-Ratio Wings", AIAA Journal, Vol. 39, 2001 pp. 1430-1441.   DOI   ScienceOn
12 Palacios, R. and Cesnik, C. E. S., "Static Nonlinear Aeroelasticity of Flexible Slender Wings in Compressible Flow", 46th AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics & Materials Conference, AIAA 2005-1945, 2005.
13 Schuster, D. M., Liu, D. D. and Huttsell L. J., "Computational Aeroelasticity: Success, Progress, Challenge", Journal of Aircraft, Vol. 40, 2003, pp. 843-856.   DOI   ScienceOn
14 Wang, Z., Chen, P. C., Liu, D. D., Mook, D. T. and Patil, M. J., "Time Domain Nonlinear Aeroelastic Analysis for HALE Wings", 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2006-1640, 2006.
15 김유신, "반응면 기법을 이용한 초음속 전투기 날개의 다학제간 다점 설계", 서울대학교 대학원 항공우주공학과 박사학위 논문, 2002.
16 Jenkinson, L. R. and Marchman J. F. III, "Aircraft Design Project for Engineering Students", 1st ed., Butterworth-Heinemann, Oxford, 2003.
17 A. Jameson, "Aerodynamic Design via Control Theory", Journal of Scientific Computing, Vol. 3, 1988, pp. 233-260   DOI