• 제목/요약/키워드: state space modeling

검색결과 241건 처리시간 0.038초

상태 공간 외란관측기를 이용한 강인 제어기법 연구 (The study of Robust Control using a State-Space Disturbance Observer)

  • 조규남;정정주;이승희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.705-707
    • /
    • 2004
  • In this paper, we propose a robust control technique against parameter uncertainties as well as external disturbances. It is robust control scheme using discrete-time state space disturbance observer. It does not require disturbance modeling, plant inverse modeling and/or Q filter. In frequency domain, its performance is evaluated in terms of sensitivity and complementary sensitivity as well as gain and phase margin. Finally we discuss design criterion of state space disturbance observer considering its performance in frequency domain.

  • PDF

칼만 필터 알고리즘을 이용한 유비쿼터스 센서 기반 임베디드 로봇시스템의 온라인 동적 모델링 (Online Dynamic Modeling of Ubiquitous Sensor based Embedded Robot Systems using Kalman Filter Algorithm)

  • 조현철;이진우;이영진;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents Kalman filter based system modeling algorithm for autonomous robot systems. State of the robot system is measured using embedded sensor systems and then carried to a host computer via ubiquitous sensor network (USN). We settle a linear state-space motion equation for unknown robot system dynamics and modify a popular Kalman filter algorithm in deriving suitable parameter estimation mechanism. To represent time-delay nature due to network media in system modeling, we construct an augmented state-space model which is mainly composed of original state and estimated parameter vectors. We conduct real-time experiment to test our proposed estimation algorithm where speed state of the constructed robot is used as system observation.

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF

Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

  • Park, Jinho;Lee, Byoungkuk;Jung, Do-Yang;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1927-1934
    • /
    • 2018
  • In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.

Health monitoring of multistoreyed shear building using parametric state space modeling

  • Medhi, Manab;Dutta, Anjan;Deb, S.K.
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.47-66
    • /
    • 2008
  • The present work utilizes system identification technique for health monitoring of shear building, wherein Parametric State Space modeling has been adopted. The method requires input excitation to the structure and also output acceleration responses of both undamaged and damaged structure obtained from numerically simulated model. Modal parameters like eigen frequencies and eigen vectors have been extracted from the State Space model after introducing appropriate transformation. Least square technique has been utilized for the evaluation of the stiffness matrix after having obtained the modal matrix for the entire structure. Highly accurate values of stiffness of the structure could be evaluated corresponding to both the undamaged as well as damaged state of a structure, while considering noise in the simulated output response analogous to real time scenario. The damaged floor could also be located very conveniently and accurately by this adopted strategy. This method of damage detection can be applied in case of output acceleration responses recorded by sensors from the actual structure. Further, in case of even limited availability of sensors along the height of a multi-storeyed building, the methodology could yield very accurate information related to structural stiffness.

직류 마이크로그리드 시스템의 고조파 상태 공간 모델링 (Harmonic State Space Modeling of DC Microgrid Systems)

  • Kamalirad, Mohsen;To, Dinh Du;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.483-484
    • /
    • 2019
  • This paper proposes a harmonic state space (HSS) modeling of DC microgrid. In the HSS model, nonlinear equations for the switched circuit model are transformed into multiple linear equations. The simulation results have shown the HSS modeling is comparable with PSIM simulation.

  • PDF

Descriptor Type Linear Parameter Dependent System Modeling And Control of Lagrange Dynamics

  • Kang, Jin-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.444-448
    • /
    • 2003
  • In this paper, the Lagrange dynamics is studied. A state space representation of Lagrange dynamics and control algorithm based on the state feedback pole placement are presented. The state space model presented is descriptor type linear parameter dependent system. It is shown that the control algorithms based on the linear system theory can be applicable to the state space representation of Lagrange dynamics. To show that the linear system theory can be applicable to the state space representation of Lagrange dynamics, the LMI based regional pole-placement design algorithm is developed and present two examples.

  • PDF

Preliminary Characterization of Secondary Illumination at Shackleton Crater Permanently Shadowed Region from ShadowCam Observations and Modeling

  • Prasun Mahanti;Mark Southwick Robinson;David Carl Humm;Robert Vernon Wagner;Nicholas Michael Estes;Jean-Pierre Williams
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권4호
    • /
    • pp.131-148
    • /
    • 2023
  • Lunar permanently shadowed regions (PSRs) never see direct sunlight and are illuminated only by secondary illumination - light reflected from nearby topography. The ShadowCam imaging experiment onboard the Korea Pathfinder Lunar Orbiter is acquiring images of these PSRs. We characterize and discuss the nature of secondary illumination for the Shackleton PSR from ShadowCam radiance-calibrated images. We also use modeling to understand the magnitude and direction of the secondary illumination. Results from our analysis highlight the non-homogeneous, dynamic, and complex nature of PSR secondary lighting. Knowledge of the direction of the secondary illumination is crucial for reli-able interpretation of contrasts observed in ShadowCam images. This preliminary analysis of the floor of Shackleton crater from images acquired over multiple secondary illumination conditions does not reveal indications of exposed surface ice, even though temperatures are constantly below 110K.

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권1호
    • /
    • pp.11-18
    • /
    • 2023
  • The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

Validation of Generalized State Space Averaging Method for Modeling and Simulation of Power Electronic Converters for Renewable Energy Systems

  • Rimmalapudi, Sita R.;Williamson, Sheldon S.;Nasiri, Adel;Emadi, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.231-240
    • /
    • 2007
  • This paper presents an advanced modeling and simulation technique applied to DC/DC power electronic converters fed through renewable energy power sources. The distributed generation (DG) system at the Illinois Institute of Technology, which employs a phase-l system consisting of a photovoltaic-based power system and a phase-2 system consisting of a fuel cell based primary power source, is studied. The modeling and simulation of the DG system is done using the generalized state space averaging (GSSA) method. Furthermore, the paper compares the results achieved upon simulation of the specific GSSA models with those of popular computer aided design software simulations performed on the same system. Finally, the GSSA and CAD software simulation results are accompanied with test results achieved via experimentation on both, the PV-based phase-l system and the fuel cell based phase-2 power system.