DOI QR코드

DOI QR Code

Fundamentals of Numerical Modeling of the Mid-latitude Ionosphere

  • Geonhwa Jee (Division of Atmospheric Sciences, Korea Polar Research Institute)
  • Received : 2023.01.30
  • Accepted : 2023.02.21
  • Published : 2023.03.15

Abstract

The ionosphere is one of the key components of the near-Earth's space environment and has a practical consequence to the human society as a nearest region of the space environment to the Earth. Therefore, it becomes essential to specify and forecast the state of the ionosphere using both the observations and numerical models. In particular, numerical modeling of the ionosphere is a prerequisite not only for better understanding of the physical processes occurring within the ionosphere but also for the specification and forecast of the space weather. There are several approaches for modeling the ionosphere, including data-based empirical modeling, physics-based theoretical modeling and data assimilation modeling. In this review, these three types of the ionospheric model are briefly introduced with recently available models. And among those approaches, fundamental aspects of the physics-based ionospheric model will be described using the basic equations governing the mid-latitude ionosphere. Then a numerical solution of the equations will be discussed with required boundary conditions.

Keywords

Acknowledgement

This work was supported by Korea Polar Research Institute (KOPRI) grant funded by the Ministry of Oceans and Fisheries (KOPRI PE23020).

References

  1. Bhattacharya T, Otto A, Lummerzheim D, Role of ionospheric Pedersen conductance and its gradient in field-aligned currents, J. Atmos. Sol. Terr. Phys. 233-234, 105813 (2022). https://doi.org/10.1016/j.jastp.2021.105813 
  2. Bilitza D, 35 Years of international reference ionosphere-Karl Rawer's legacy, Adv. Radio Sci. 2, 283-287 (2005). https://doi.org/10.5194/ars-2-283-2004 
  3. Bilitza D, Pezzopane M, Truhlik V, Altadill D, Reinisch BW, et al., The international reference ionosphere model: a review and description of an ionospheric benchmark, Rev. Geophys. 60, e2022RG000792 (2022). https://doi.org/10.1029/2022rg000792 
  4. Codrescu MV, Negrea C, Fedrizzi M, Fuller-Rowell TJ, Dobin A, et al., A real-time run of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model, Space Weather 10, S02001 (2012). https://doi.org/10.1029/2011sw000736 
  5. Fontaine D, Structure and dynamics of the Earth's polar ionosphere: recent results inferred from incoherent scatter sounders, Plasma Sources Sci. Technol. 11, A113 (2002). https://doi.org/10.1088/0963-0252/11/3A/317 
  6. Heelis RA, The polar ionosphere, Rev. Geophys. 20, 567-576 (1982). https://doi.org/10.1029/RG020i003p00567 
  7. Huba J, Krall J, Modeling the plasmasphere with SAMI3, Geophys. Res. Lett. 40, 6-10 (2013). https://doi.org/10.1029/2012GL054300 
  8. Huba JD, Joyce G, Fedder JA, Sami2 is another model of the ionosphere (SAMI2): a new low-latitude ionosphere model, J. Geophys. Res. Space Phys. 105, 23035-23053 (2000). https://doi.org/10.1029/2000JA000035 
  9. Huba JD, Maute A, Crowley G, SAMI3_ICON: model of the ionosphere/plasmasphere system, Space Sci. Rev. 212, 731-742 (2017). https://doi.org/10.1007/s11214-017-0415-z 
  10. Jee G, Analysis and interpretation of total electron content measurements, PhD Dissertation, Utah State University (2005). 
  11. Jee G, Schunk RW, Scherliess L, On the sensitivity of total electron content (TEC) to upper atmospheric/ionospheric parameters, J. Atmos. Sol. Terr. Phys. 67, 1040-1052 (2005). https://doi.org/10.1016/j.jastp.2005.04.001 
  12. Kim E, Jee G, Ji EY, Kim YH, Lee C, et al., Climatology of polar ionospheric density profile in comparison with mid-latitude ionosphere from long-term observations of incoherent scatter radars: a review, J. Atmos. Sol. Terr. Phys. 211, 105449 (2020). https://doi.org/10.1016/j.jastp.2020.105449 
  13. Lee HB, Jee G, Kim YH, Shim JS, Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite, J. Geophys. Res. Space Phys. 118, 935-946 (2013). https://doi.org/10.1002/jgra.50130 
  14. Lin D, Sorathia K, Wang W, Merkin V, Bao S, et al., The role of diffuse electron precipitation in the formation of subauroral polarization streams, J. Geophys. Res. Space Phys. 126, e2021JA029792 (2021). https://doi.org/10.1029/2021JA029792 
  15. Liu HL, Bardeen CG, Foster BT, Lauritzen P, Liu J, et al., Development and validation of the whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X 2.0), J. Adv. Model. Earth Syst. 10, 381-402 (2018). https://doi.org/10.1002/2017MS001232 
  16. Martinis C, Meriwether J, Niciejewski R, Biondi M, Fesen C, et al., Zonal neutral winds at equatorial and low latitudes, J. Atmos. Sol. Terr. Phys. 63, 1559-1569 (2001). https://doi.org/10.1016/s1364-6826(01)00022-0 
  17. Pedatella NM, Anderson JL, Chen CH, Raeder K, Liu J, et al., Assimilation of ionosphere observations in the Whole Atmosphere Community Climate Model with Thermosphere-Ionosphere EXtension (WACCMX), J. Geophys. Res. Space Phys. 125, e2020JA028251 (2020). https://doi.org/10.1029/2020JA028251 
  18. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical Recipes in Fortran 77: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992). 
  19. Prolss G, Physics of the Earth's Space Environment: An Introduction (Springer-Verlag, Berlin Heidelberg, 2004). 
  20. Ridley AJ, Deng Y, Toth G, The global ionosphere-thermosphere model, J. Atmos. Sol. Terr. Phys. 68, 839-864 (2006). https://doi.org/10.1016/j.jastp.2006.01.008 
  21. Ridley AJ, Gombosi TI, DeZeeuw DL, Ionospheric control of the magnetosphere: conductance, Ann. Geophys. 22, 567-584 (2004). https://doi.org/10.5194/angeo-22-567-2004 
  22. Roble R, The NCAR thermosphere-ionosphere-mesophereelectrodynamics general circulation model (TIME-GCM), in Solar-Terrestrial Energy Program: Handbook of Ionospheric Models, ed. Schunk R (Utah State University, Logaan, UT, 1996), 281-288. 
  23. Scherliess L, Schunk RW, Sojka JJ, Thompson DC, Development of a physics-based reduced state Kalman filter for the ionosphere, Radio Sci. 39 (2004). https://doi.org/10.1029/2002RS002797 
  24. Scherliess L, Schunk RW, Sojka JJ, Thompson DC, Zhu L, Utah State University global assimilation of ionospheric measurements Gauss-Markov Kalman filter model of the ionosphere: model description and validation, J. Geophys. Res. Atmos. 111, A11315 (2006). https://doi.org/10.1029/2006JA011712 
  25. Scherliess L, Tsagouri I, Yizengaw E, Bruinsma S, Shim JS, et al., The international community coordinated modeling center space weather modeling capabilities assessment: overview of ionosphere/thermosphere activities, Space Weather, 28, 527-538 (2019). https://doi.org/10.1029/2018sw002036 
  26. Schunk R, Nagy AF, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge University Press, New York, 2009). 
  27. Schunk RW, A mathematical model of the middle and high latitude ionosphere, Pure Appl. Geophys. 127, 255-303 (1988). https://doi.org/10.1007/BF00879813 
  28. Schunk RW, Scherliess L, Eccles V, Gardner LC, Sojka JJ, et al., Challenges in specifying and predicting space weather, Space Weather 19, e2019SW002404 (2020). https://doi.org/10.1029/2019SW002404 
  29. Schunk RW, Scherliess L, Sojka JJ, Recent approaches to modeling ionospheric weather, Adv. Space Res. 31, 819-828 (2003). https://doi.org/10.1016/S0273-1177(02)00791-3 
  30. Schunk RW, Scherliess L, Sojka JJ, Thompson DC, Anderson DN, et al., Global assimilation of ionospheric measurements (GAIM), Radio Sci. 39 (2004). https://doi.org/10.1029/2002RS002794 
  31. Schunk RW, Sojka JJ, Ionosphere-thermosphere space weather issues, J. Atmos. Terr. Phys. 58, 1527-1574 (1996). https://doi.org/10.1016/0021-9169(96)00029-3 
  32. Schunk RW, Sojka JJ, Eccles JV, Expanded capabilities for the ionospheric forecast model, Air Force Research Laboratory Technical Report, AFRL-VS-HA-TR-98-0001 (1997). 
  33. Shim JS, Tsagouri I, Goncharenko L, Rastaetter L, Kuznetsova M, et al., Validation of ionospheric specifications during geomagnetic storms: TEC and foF2 during the 2013 March storm event, Space Weather 16, 1686-1701 (2018). https://doi.org/10.1029/2018SW002034 
  34. Welling DT, Andre M, Dandouras I, Delcourt D, Fazakerley A, et al., The earth: plasma sources, losses, and transport processes, in Plasma Sources of Solar System Magnetospheres, eds. Nagy AF, Blanc M, Chappell CR, Krupp N (Springer, New York, 2016), 145-208.