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Abstract – In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity 
lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. 
Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential 
equations in the mathematical form and expressed by the state space equation through battery 
modeling to extract the characteristic parameters of the lithium secondary battery. Charging and 
discharging equipment were used to perform characteristic tests for the extraction of parameters of 
lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a 
state observer, was used to estimate the state of the battery. The battery capacity and internal resistance 
of the high-capacity lithium secondary battery were investigated through battery modeling. The 
proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We 
confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC 
values from the experiment. The proposed method using the EKF is expected to be highly applicable in 
estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.  
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Kalman filter, State space equation. 

 
 
 

1. Introduction 
 
Countries worldwide are experiencing adverse effects 

such as depletion of fossil fuel resources, intensification 
of atmospheric pollution, and greenhouse effects caused 
by CO2 due to rapid industrialization. Therefore, awareness 
regarding environment protection is getting stronger, and 
environmental regulations have been strengthened to 
protect the world environment. Major developed countries 
are obliged to label their energy efficiency to save energy 
and to strive for carbon emission reduction, to mitigate the 
yearly increase in greenhouse gas. Particularly, the interest 
in environmentally friendly cars and the efforts to expand 
the market are increasing to reduce carbon emissions from 
the internal combustion engine that emits exhaust gases [1]. 

Korea has also been actively promoting eco-friendly cars 
such as electric cars, as government support policies and 
strong investments from industry have recently occurred. 
As the market becomes more active, the interest in electric 
vehicles (EVs) with high power and high-capacity batteries 
is increasing. Since the batteries used in electric vehicles 
require high capacity and high power, rechargeable lithium 
batteries with excellent performance are being used. Further, 

the battery pack applied to all electric vehicles is equipped 
with a battery management system (BMS), which detects 
and estimates the state of the battery in real time. The battery 
status information acquired by the BMS is provided to the 
vehicle for efficient driving and control [2-5]. 

In this paper, we propose a battery state estimation 
method to efficiently control the high-capacity lithium 
secondary battery for EVs, an environmentally friendly 
automobile. Since the electric vehicle battery requires a 
large change in instantaneous power, a technology 
capable of controlling the voltage and current in real time 
is required. Therefore, an algorithm that can accurately 
estimate the battery state in real time is needed. Status 
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Fig. 1. Battery model with RC circuit 

 

 
Fig. 2. State space equation for battery model 
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information such as SOC and state of health (SOH) of the 
battery cannot be simply measured or calculated, and they 
should be precisely estimated through the investigation and 
analysis of battery parameters. Therefore, the battery state 
estimation algorithm requires a mathematical differential 
equation that reflects a multidimensional nonlinear system 
since the charging and discharging characteristics of a 
lithium secondary battery are not linear. 

In this paper, battery modeling is performed by 
expressing the temperature characteristic and internal 
resistance of the lithium secondary battery by the state 
space equation, and the SOC estimation technique of the 
battery is studied by applying the EKF as a state observer. 
To validate this study, we applied a driving profile to 
simulate a real vehicle to determine the state of a lithium 
secondary battery pack for an electric vehicle. 

 
 

2. Li-ion Battery Modeling and Parameters 
Extraction  

 
2.1 Battery modeling using state space equation 

 
The lithium secondary battery is a nonlinear system of 

which its charging and discharging characteristics are 
different. To estimate the SOC of the battery, an electric 
circuit model is utilized and the governing equations of 
the battery model is expressed as state space equations of 
the differential equations. 

The electric circuit of the battery model should be 
configured as an RC ladder as a continuous nonlinear 
model using internal parameters such as the nominal 
capacity of the battery, internal resistance, conduction 
resistance, and diffusion resistance. 

The terminal voltage of the lithium secondary battery 
model is expressed by (1). 

 
 hppkocvbat VVVRiVV ++++= 21   (1) 

 
To estimate the state of the lithium secondary battery, the 

state space equation and state variables were used. In this 
paper, battery modeling is performed using the enhanced 
self-correcting (ESC) model, which can demonstrate the 
nonlinear characteristics of the lithium secondary battery. 
The state of the selected lithium secondary battery model is 
estimated based on the input current and the output voltage. 
The ESC model represented by the state space equation is 
given by (2) and (3), (4). [3]. 
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Where, yk is the output voltage of the proposed modeling, 

which is represented by the open-circuit voltage (OCV) 
corresponding to the state variable SOC(Zk), the low-pass 
filter filt (ik) that receives the current generated by the 
battery charge/discharge, the internal resistance of the 
battery (R), the input current (ik), the hysteresis (hk) that 
appears differently during polarization and discharge 
because of the difference in electrolyte concentration, the 
battery’s nominal capacity (Cn), the estimate of the 
battery’s internal resistance has different values for 
charge(R+) and discharge (R-) conditions. the vector 
representing the filter poles (α1), the polarization (M) 
according to hysteresis, the hysteresis rate constant (γ) and 
the battery modeling parameter θ that can be expressed 
as θ =[α1, g1, γ, Cn, R+, R-, M].  

In this equation, the function of the filter filt(ik) leads the 
output voltage yk to converge to OCV after a resting period, 
and the output yk converges to OCV + hk + Rik including 
the OCV when charging/discharging with a constant 
current. The linear filter is implemented by the state 
space equation, as shown in the following form (5). 
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where, fk is the filter state vector at a discrete time k, ik is 
the input vector, f

ky  is the filter output vector, Af is the 
state-transition matrix of the filter, Bf is the input matrix of 
the filter. G is the output matrix of the filter.  
 
2.2 Battery test for parameter extraction 

 
The test for extracting the parameters used in the battery 

modeling was performed using the NMC (Lithium Nickel 
Manganese Cobalt Oxide)-type lithium secondary battery 
cell. The test was carried out using the unit cell of a 2-
parallel and the module consisting of 2-parallel and 9-
series as shown in Fig. 3. For the battery model of the 
selected lithium secondary battery, the reference 
temperature was selected as 25 °C, and then the battery 
characteristics was extracted at various temperatures using 
a temperature-controlled chamber. 

The battery characteristics test for the parameter 
extraction was carried out using the driving profile of the 
fuel economy test mode of the vehicle. This profile has the 
advantage of simulating a dynamic situation rather than a 
constant current, therefore, the proposed battery modeling 
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can be evaluated at the system level. 
After selecting the parameters through the unit cell 

(2P) test, the selected unit cell parameter information was 
applied to a module and a pack system to examine the 
feasibility and the error of the model. 

The driving profile used in the test was an urban 
dynamometer driving schedule (UDDS) cycle, in which the 
cycle is 1372 seconds, and the charging and discharging 
tests were repeated using the charging and discharging 
equipment from 100% to 0% SOC of the cell. The driving 
profile used for the characteristic test is shown in Fig. 4. 

The parameter extraction tests were performed at 
temperatures of -10 °C, 0 °C, 10 °C, 25 °C, 35 °C, and 
45 °C. 

The output information of the battery is stored every 1 
second. The parameter extraction is carried out through 
the profile application test, and the combination of the 
parameters is searched to obtain the minimum error with 
respect to the input/output of 12,000 or more. Since the 
output characteristics of a lithium secondary battery have 
a continuity of a multidimensional nonlinear system, it 
cannot be perfectly solved mathematically. Therefore, the 
extracted parameters can be regarded as a partial set of 

parameters that cannot be defined as a whole parameter 
of the battery. This can be analyzed using linear filtering 
such as the least square method. Table 1 shows the battery 
parameters selected by testing at various temperatures. 

After selecting the parameters of the battery model at 
various temperatures, the fitness of the internal resistance 
parameter was verified using the hybrid pulse power 
characterization (HPPC) output test method. Fig. 5 shows 
the changes in voltage and current at 25 °C. The charging 
resistance and discharging resistance at each temperature 
are shown in Table 2 and Fig. 6. 

The average value of the internal resistance obtained 
through the HPPC test and the internal resistances selected 
through modeling showed similar values above 10 °C, and 

 
             (a) 2P cell unit                     (b) 2P-9S module                 (c) 20 kWh pack 

Fig. 3. Battery test for parameter extraction 
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Fig. 4. UDDS Profile 

 
Fig. 5. HPPC test results of the battery cell with a 2-

parallel connection. 
 

Table 1. Battery parameters at various temperatures 

 -10°C 0°C 10°C 25°C 35°C 45°C 
α1 1.718 2.572 2.385 2.245 2.275 2.365 
g1 0.977 0.326 0.263 0.153 0.144 0.112 
γ 5.449 -0.48 2.504 0.0 6.47 0.588 

Cn 45.738 52.405 54.003 62.376 61.879 60.157 
R- 0.014 0.008 0.003 0.002 0.002 0.002 
R+ 0.013 0.008 0.003 0.002 0.002 0.002 
M 0.067 -0.003 -0.033 -0.122 0.029 0.098 
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the differences were found to be 3-6 mΩ. Therefore, the 
internal resistance measured by the HPPC method should 
be considered for optimizing the battery model parameters 
at low temperatures. 

 
2.3 Parameter optimization according to temperature  

 
The output power of the lithium secondary battery 

rapidly decreases in the low temperature range. This is 
caused by the diffusion reaction of the electrolyte 
constituting the lithium secondary battery, which shows a 
very sensitive response to the temperature change. The 
output power of the lithium secondary battery at low 
temperatures is dominated by the diffusion resistance 
component according to the temperature change in the 
electrolyte. The capacity, OCV, and the parameters of the 
proposed model show a large temperature dependency. 
Therefore, the model applied at room temperature shows 
different behaviors at low temperatures; hence, a battery 
model that can be applied for a wide range of temperatures 
is needed. Therefore, the parameters of the model 
obtained from the 25 °C test selected as the reference 
should be optimized to reflect the characteristics at low 
temperatures. 

The parameters obtained through the characteristic tests 
performed at various temperature conditions are described 
by the following multidimensional equations, and the 
parameters according to the temperature are expressed as 
(6) together with the temperature T [3-5]. 

Table 3. Polynomial coefficients for different parameters 

Polynomial coefficients (third order) Parameter 
C3 C2 C1 C0 

α1 3.98·10-5 -2.54·10-3 3.35·10-2 2.40 
g1 -1.9·10-5 -1.53·10-3 -3.64·10-2 4.14·10-1 
γ 3.78·10-4 2.21·10-2 -2.13·10-1 5.87·10-1 

Cn -1.59·10-4 6.40·10-4 4.98·10-1 5.09·10 
R- -1.43·10-7 1.52·10-5 -5.14·10-4 7.38·10-3 
R+ -1.08·10-7 1.26·10-5 -4.63·10-4 7.23·10-3 
M 2.71·10-6 7.75·10-5 -6.49·10-3 -6.5·104 
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Table 3 and Fig. 7 show the polynomial coefficients that 

form the polynomial equation, which is expressed by the 
general formula according to the temperature. 

 
2.4 Comparison of modeling results and measured 

results 
 
Tests were conducted to validate the proposed model 

for the battery module by applying the parameter values 
obtained by the characteristic tests on the unit cells of the 
battery modules. Using a temperature-controlled chamber, it 
was tested analyzed based on the results obtained from 
various temperatures ranging from low to high temperatures. 

Fig. 8 shows the result of the modeling by applying the 
cell parameters according to temperature. As shown in the 
graph, the voltage estimation RMS error according to each 

 
(a) DC-IR under charge 

 
(b) DC-IR under discharge 

Fig. 6. 2P DC-IR test results of unit cell 
 

Table 2. 2P DC-IR of unit cell 

SOC 
Temp 90% 80% 70% 60% 50% 40% 30% 20% 10% Avg. 

R-(Ω) 8.1e-3 7.9e-3 7.7e-3 7.9e-3 8.5e-3 8.9e-3 9.1e-3 9.3e-3 9.4e-3 8.1e-3 -10°C R+(Ω) 9.1e-3 8.4e-3 7.9e-3 7.8e-3 8.0e-3 8.2e-3 8.3e-3 8.4e-3 8.4e-3 9.1e-3 
R-(Ω) 5.4e-3 5.4e-3 5.3e-3 5.4e-3 5.8e-3 5.9e-3 6.3e-3 6.9e-3 7.2e-3 5.4e-3 0°C R+(Ω) 5.3e-3 5.3e-3 5.3e-3 5.3e-3 5.6e-3 5.7e-3 5.8e-3 6.0e-3 6.1e-3 5.3e-3 
R-(Ω) 4.1e-3 4.1e-3 4.1e-3 4.1e-3 4.2e-3 4.3e-3 4.4e-3 4.9e-3 5.5e-3 4.1e-3 10°C R+(Ω) 4.0e-3 4.0e-3 4.0e-3 4.0e-3 4.2e-3 4.2e-3 4.3e-3 4.5e-3 4.7e-3 4.0e-3 
R-(Ω) 2.9e-3 2.9e-3 2.9e-3 2.9e-3 3.0e-3 2.9e-3 3.0e-3 3.1e-3 3.6e-3 2.9e-3 25°C R+(Ω) 2.8e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 3.0e-3 3.1e-3 3.3e-3 2.8e-3 
R-(Ω) 2.9e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 3.0e-3 3.0e-3 3.4e-3 2.9e-3 35°C R+(Ω) 2.8e-3 2.8e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 3.0e-3 3.0e-3 3.3e-3 2.8e-3 
R-(Ω) 2.8e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 3.0e-3 3.0e-3 3.3e-3 2.8e-3 45°C R+ (Ω) 2.8e-3 2.8e-3 2.9e-3 2.9e-3 2.9e-3 2.9e-3 3.0e-3 3.0e-3 3.2e-3 2.8e-3 
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temperature modeling was larger at low temperatures than 
it was at room temperature or high temperatures. The 
RMS error increasing at low temperatures can be attributed 
to the internal resistance at low temperatures, which 
differs significantly at room temperature. Therefore, 
since the internal resistance of the battery has a nonlinear 
characteristic, the error becomes large when the linear 
output equation is applied. 

Table 4 and Fig. 8 show the difference between the test 
values at various temperatures and the estimated values 
from the battery modeling. The root mean squared error 

(RMSE) is shown in (7). 
 

 
n
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3. SOC Estimation and Verification using EKF 
 

3.1 SOC estimation using EKF  
 
To estimate the SOC of a lithium secondary battery, it is 

impossible to directly measure the SOC; therefore, it is 
necessary to estimate the SOC by an indirect method. In 
the estimation, the current integration method by current 
accumulation and the cell impedance measurement method 
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Fig. 7. Parameter coefficients at various temperatures 
 

Table 4. RMSE at various temperatures 

Temperature[°C] -10 0 10 25 35 45 
Error Cost [V] 0.128 0.087 0.078 0.026 0.023 0.023 
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Fig. 9. Battery pack of electric vehicle 

 
utilizing an impedance, which is a resistance component of 
a battery cell are widely used. In this paper, we present a 
mathematical equation of state through battery modeling 
and then use the state observer to estimate the remaining 
capacity. 

First, the state parameter of the battery is selected. Based 
on this value, the state variable of the SOC is obtained 
through the input current and the output voltage. The 
system consists of a state variable through the input and 
output, which can be measured. The Kalman filter (KF) 
used as the state observer is a filter used to predict the 
variables and can be predicted mathematically by 
minimizing the state error of the linear system. However, 
since the parameters of the battery are nonlinear, it is 
difficult to obtain satisfactory accuracy when simply 
applying the KF. Therefore, to apply the nonlinear system 
of the lithium secondary battery, the variable is estimated 
using an EKF. When the EKF is applied, it is possible to 
predict the SOC of the battery at 20%-90% of the SOC 

available area, and the accuracy of the SOC estimation is 
less than 5%. The EKF estimates the state x, which is 
SOC of the battery by the EKF, of the battery using the 
measurement voltage y value, and minimizes the mean 
square error of the state estimation observation value x̂ . 
This is expressed by (8). 
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The EKF equation, which is a nonlinear system, is 

defined as follows: 
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where wk and vk represent the white Gaussian noise with an 
average of zero. At each time step, f(x(k),u(k)) and 
g(x(k),u(k)) are the Taylor-series expansions, and the EKF 
loop is as follows: [6-9] 
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Fig. 8. Voltage estimation error results at various temperatures 
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3.2 Verification of SOC algorithm using EKF 
estimation method 

 
The verification tests are conducted at various conditions 

to obtain the accuracy of the SOC estimation algorithm 
using the EKF. The verification tests show that the error 

between the voltage measured from the battery pack testing 
and the voltage estimated by the EKF is within 0.19–1.21% 
for the UDDS profile. Further, the estimated SOC and the 
measured SOC values were compared, and the error was 
0.23% to 2.32%. The results obtained from the SOC 
verification test are shown in Fig. 10 and Table 5. 

 
 

4. Conclusion  
 
In this paper, the characteristics of the high-capacity 

lithium secondary battery are represented by mathematical 
differential equations and the parameters of the lithium 
secondary battery cells are extracted at various temperatures, 
ranging from high temperature to low temperature, 
through the battery modeling using the state space equation. 
A MATLAB tool was used to find the combination of the 
extracted parameters with minimum error. The extracted 
parameters were expressed as polynomial coefficients 
and optimized to be applied to various temperature ranges. 
The SOC is estimated using the optimized parameters 
represented by the state space equation. The estimated 
SOC is compared with the real SOC value acquired from 
the battery pack testing with a capacity of 20 kWh for the 
EV. The difference between the real SOC of the battery 
pack measured from the battery pack test and the estimated 
SOC using the EKF algorithm were within 2.3% and the 
feasibility of the study is confirmed. Through this study, 
the proposed SOC estimation method using the EKF shows 
a satisfactory accuracy and can be used as an SOC 
estimation method even in the dynamic situation of a 400-
V high-voltage battery pack for the electric vehicle. 
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