• 제목/요약/키워드: state feedback controller

검색결과 677건 처리시간 0.035초

원점 복귀 가능한 차륜형 역진자 제어를 위한 확장 상태피드백 제어기 설계 (Design of an Augmented State Feedback Controller for a Wheeled Inverted Pendulum Returning to the Origin)

  • 이세한
    • 로봇학회논문지
    • /
    • 제6권4호
    • /
    • pp.317-322
    • /
    • 2011
  • An augmented state feedback controller for a Wheeled Inverted Pendulum (WIP) is proposed in this research. The augmented state feedback controller is able to keep the WIP returning to the origin. Generally, the WIP has both stable and unstable equilibrium points. To keep the WIP over the unstable equilibrium point, the WIP consistently is being controlled. A simple state feedback controller is letting the WIP out of the origin when the center of gravity of the WIP locates out of the schematic center line. In some case of applications, it may not be desirable that the WIP is drifting out of the initial location. The proposed augmented state feedback controller is able to keep the WIP at the initial location whether its center of gravity lies out of the center line or not. Numerical simulations are carried out to show the validation of the augmented sated feedback controller.

Mixed $H_2/H_{\infty}$ Control of Two-wheel Mobile Robot

  • Roh, Chi-Won;Lee, Ja-Sung;Lee, Kwang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.438-443
    • /
    • 2003
  • In this paper, we propose a control algorithm for two-wheel mobile robot that can move the rider to his or her command and autonomously keep its balance. The control algorithm is based on a mixed $H_2/H_{\infty}$ control scheme. In this control problem the main issue is to move the rider while keeping its balance in the presence of disturbances and parameter uncertainties. The disturbance force caused by uneven road surfaces and the uncertainty due to different rider's heights are considered. To this end we first consider a state feedback controller as a basic framework. Secondly, we obtain the state feedback gain $K_2$ minimizing the $H_2$ norm and the state feedback gain $K_{\infty}$ minimizing the $H_{\infty}$ norm over the whole range of parameter uncertainty. Finally, we select mixed $H_2$/$H_{\infty}$ state feedback controller K as the geometric mean of $K_2$ and $K_{\infty}$. Simulation results show that the mixed $H_2/H_{\infty}$ state feedback controller combines the effects of the optimal $H_2$ state feedback controller and robust $H_{\infty}$ controller state feedback controller efficiently in the presence of disturbance and parameter uncertainty.

  • PDF

Fuzzy Modeling and Control of Wheeled Mobile Robot

  • Kang, Jin-Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.58-65
    • /
    • 2003
  • In this paper, a new model, which is a Takagi-Sugeno fuzzy model, for mobile robot is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and the outer loop is a PI controller designed for tracking the reference input, is suggested. Because the robot dynamics is nonlinear, it requires the controller to be insensitive to the nonlinear term. To achieve this objective, the model is developed by well known T-S fuzzy model. The design algorithm of inner state-feedback loop is regional pole-placement. In this paper, regions, for which poles of the inner state feedback loop are lie in, are formulated by LMI's. By solving these LMI's, we can obtain the state feedback gains for T-S fuzzy system. And this paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ(linear quadratic) cost. By using these properties, it is also shown in this paper that the PI controller can be obtained by solving the LQ problem.

Delayed state feedback controller for the stabilization of ordinary systems

  • Lee, Gi-Won;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.947-950
    • /
    • 1988
  • A New type of controller for stabilization of ordinary system in which delayed states are included in feedback loop, is presented. Simple conditions are proposed for the stabilization of ordinary systems with the delayed state feedback controller. Under these conditions, controller gains can be chosen such that desired system performances are satisfied. It is shown that by using this controller the performance and robustness of the resulting closed loop system are much improved compared to the conventional memoryless state feedback controllers.

  • PDF

Robust and Non-fragile $H^{i~}$ State Feedback Controller Design for Time Delay Systems

  • Cho, Sang-Hyun;Kim, Ki-Tae;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.503-510
    • /
    • 2003
  • This paper describes the synthesis of robust and non-fragile $H^{i~}$state feedback controllers for linear varying systems with time delay and affine parameter uncertainties, as well as static state feedback controller with structural uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{i~}$static state feedback controller, and the region of controllers satisfying non-fragility are presented. Also, using some change of variables and Schur complements, the obtained conditions can be rewritten as parameterized Linear Matrix Inequalities (PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of time delay and controller gain variations within a resulted polytopic region.

Delayed Feedback을 이용한 로보트 제어기의 설계 (CONTROLLER DESIGN FOR A ROBOTIC MANIPULATOR DELAYED FEEDBACK)

  • 임동진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.145-148
    • /
    • 1990
  • In this paper, the problem of designing a feedback controller for a robotic manipulator, which is activated by a D.C. motor through a gear train and a flexible shaft or chain, is considered. When the response of the closed loop control system is relatively slow, a satisfactory controller may be designed as a PID controller. As the speed of the control system increases, however, the spring effect of the linkage becomes profound, and as a result, the transient response exhibits a substantial oscillation. To eliminate this oscillation, it is necessary to design the controller based on at least a fourth order system model. This, in turn, requires the feedback of the entire state variables. In practice, however, only the position of the manipulator and the velocity of the motor are readily measurable. The state variable reconstruction method or a state observer cannot be used because of the system nonlinearities such as the Coulomb frictions. In this study, an alternative controller, which is based on delayed feedback of the output variable only, is proposed, and a successful delayed feedback controller is designed and implemented on an actual experimental manipulator.

  • PDF

단일 구동부를 갖는 2축 도립 진자를 위한 제어기 구현 (An implementation of a controller for a double inverted pendulum with a single actuator)

  • 남노현;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.257-260
    • /
    • 1997
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link is hinged on the plate to free for rotation in the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though the proposed inverted pendulum has no actuator in lower hinge. The algorithm to control the inverted pendulum is consisted of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a feedback linearization control for the rest of the range. Concept of the virtual work is employed to drive the linearlized model for the state feedback controller. The feedback linearization controller drives a DC motor with the modified reference joint angle from the fuzzy controller which adjusts a upright posture of a proposed pendulum system. Finally, the experiments are conducted to show the validity of the proposed controller.

  • PDF

완전 궤환 비선형 계통에 대한 자기 구조화 퍼지 시스템을 이용한 상태변수 및 출력 궤환 적응 제어기 (State- and Output-feedback Adaptive Controller for Pure-feedback Nonlinear Systems using Self-structuring Fuzzy System)

  • 박장현;김성환;장영학;유영재
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1319-1329
    • /
    • 2012
  • Globally stabilizing adaptive fuzzy state- and output-feedback controllers for the fully nonaffine pure-feedback nonlinear system are proposed in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis to be considerably simplified. For the global stabilty of the clossed-loop system, the self-structuring fuzzy system whose memebership functions and fuzzy rules are automatically generated and tuned is adopted. The proposed controllers employ only one fuzzy logic system to approximate unknown nonlinear function, which highlights the simplicity of the proposed adaptive fuzzy controller. Moreover, the output-feedback controller of the considered system proposed in this paper have not been dealt with in any literature yet.

지연시간을 갖는 계통에 대한 강인한 제어기 설계 (Design of Robust Controller for Systems with Time Delay)

  • 박귀태;이기상;김성호
    • 대한전기학회논문지
    • /
    • 제39권9호
    • /
    • pp.997-1005
    • /
    • 1990
  • Integral Error and State Feedback (IESF) controller which incorporates state feedback as a modern control scheme and integral action as a classical control scheme has better performance than that of conventional PID controller in linear time invariant system. But the structure of the IESF controller requires all the state variables of the system and is applicable only to pole assignable linear time invariant systems without time delay. Many industrial processes have large time delay and it is impossible to directly apply IESF control scheme to those processes. In this paper, a new controller structure, Modified Integral Error and State Feedback (MIESF) has been suggested in order to effectively control processes having time delay and its performance has been analyzed and its effectiveness has also been confirmed. As the proposed controller uses output feedback scheme based on integral error and state feedback (IESF) method, it can be simply designed by pole assignment algorithm irrespective of the order of the process. The MIESF controller can follow setpoint changes without overshoot. It is robuster than conventional Smith-Predictor plus PI(D) controller in case of occurring time delay mismatch and extra parameter mismatches between the process and the model. It can enhance control performance by intentional time delay mismatch.

  • PDF

직류서보전동기 위치제어기의 성능향상에 관한 연구 (A study on the Performance Improvement of Position Controller in DC Servo Motor System)

  • 유종걸;이기상;홍순찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.555-558
    • /
    • 1991
  • The IESF(Integral Error and State Feedback) controller, which incorporates state feedback as a modern control scheme and integral action as a classical control scheme, has better performance than that of the conventional PID controller in linear time-invariant systems. The IESF controller requires the measurement of all the state variables. But, unfortunately, it may be difficult or impossible to measure all state variables in many applications. And the IESF controller is applicable only to pole-assignable linear time-invariant system without time delay. In this paper, new IESF controller structure was proposed which performs feedback with only measurable state variables. In order to estimate the unmeasurable state variables. It was adopted the filter mode by full-order obserber. The good performance and effectiveness of the proposed controller was confirmed by computer simulation.

  • PDF