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Abstiract: A New stabilization of

are included in

type of controller for
ordinary system in which delayed states
feedback loop, is presented. Simple conditions are proposed
for the stabilization of ordinary sysfems with the delayed
state feedback controller. Under these conditions, controller
gains can be chosen such that desired system performances are
satisfied. It is shown that by wusing this controller the
performance and robustness of the resulting closed loop system
are much improved compared to the conventional memoryless
state feedback controllers.

1. Introduction

It was known that an appropriate
feedback control system may improve the performance of the
controlled systems, But the excessive use of the time delay
action produce severe effects on stabilily and systiem
performance. Several reports have been published this
matter.[1,2,3,4,5]

It was shown in Tallman and Smith [1] and Rubin {2} that
the use of the controller with time delays for a second order

time-delay action in

on

lightly damped oscillatory sysiem may produce a deadbeat
nonoscillatory response. The problem of designing the
Propotional minus delay (PMD) controller for second order

system have been studied by Suh and Bien {3,4], where Sub and
Bien had suggested a controller utilizing the
proportional -minus-delay action and showed that the time-delay
action may be used in the design of feedback controller with a

fast settling time property since it have the average PD
action. However, their work was specifically concerned with
second order system and they did not produce general

controller design guidelines which both stability and system
performance can be satisfied.

In Kim and Chung [5], another type of
time delay actions is suggested, which is based on feeding
back the measurable state variable and their delayed values.
But their work did not show the effects of the time delay for
system performance and did not propose the practical design
method of the controller for the stabilization of ordinary
systems.

In this paper, simple methods are derived to
ordinary systems by the delayed state feedback controller
composed of a single or distributed delays, whose design
parameters may be chosen to meet the derived sufficient
conditions. And the guaranteed stability margins with the
parameter uncertainty and the effects of the disturbance
rejection are compared with conventional memoryless state
feedback control schemes such as Linear Quadratic Regulator or
Receding Horizon Control.

And it is shown that

controller using

stabilize

the time delays included in the
feedback loop may add infinite zeros to the resulting closed
loop system, so that ,for an appropriately adjusted h, the
transient response of the system may be improved drastically.
By these results repersented in this paper, controller design
parameters can be chosen easily such that the desired system
performance requirements are satisfied. Thereby, in the
feedback control system design, the performance and robustness
of the system may be more improved than those of the system
which uses the memoryless state feedback coniroller.
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This paper is organized as follows. In seciion 2, for the
case when the distributed delays are added to the feedback
loop, sufficient conditions for the resulting closed loop
system to be memoryless stabilizable are derived. In section
3, robustness against parameter uncertainty is analyzed in
terms of the guaranteed bounds of the allowable modeling
error. section 4, the improvements in the transient
behavior and the disturbance rejection with the delayed state
feedback are discussed. Section 5 presents a conclusion.

In

2. Construction of the stabilizing delayed state
feedback controller

Consider a linear time invariant system.

x(1) = A x(1) + B u(t) .1
x(t) = ¢(t) A&[-7,0] (2.2)
where x(DER™) w(DER™, y(DER™, t20 and ¢ () is

a continuous vector-valued initial function. We assume (A,B)
is a controllable pair and (C,A) is a obserbable pair.

In the above system, the contrel law of the Linear
Quadratic Regulator is given by
w(t) = -B’P - x(t) (2.3)

where P is the solution matrix of the Algebraic Riccati
equation
0-AD+PA-PBB'P+Q 2.4
We shall attempt to stabilize the above system (2.1) by

the following new delayed state feedback

h

u(l) = -l(lx(t) - sz(t-h) - S K(z)x(t-r )7 (2.5)
0
,where K, ,K,,K, € R™™ and K] is the control law of the
Linear Quadratic regulator.
From (2.1) and (2.5), the closed loop system can be
written as

h
x(t) = (A—BKl)x(t) - Bsz(t-h) - BS K(7)x(t-7)d7 (2.6)
0

Conditions are given under which control law (2.5) may be used
as a stabilizing control for system (2.1).

Theorem 2.1 : For some positive scalar h, the system (2.1) can
be stabilized by means of a delayed state feedback controller
of the form (2.5) where Kl is obtained with any positive
definite matrix Q satisfying

Y ;. .
[*] >2/\mnx[ K2K2 h Ka(r)Ks(T) 1-1,0s 7t =h 2.7
proof: Let
B t Bt
V(Xt)= hX'(t)PX(t)ﬂ'lﬁS x(s)’x(s)ds +ﬂg Sx(s)'x(s)dsdt
t-h 0vt-7 (2.8)



be a Lyapunov functional, where x, € C([-h,0],Rn) is defined
by xt(s) = x(t+s), -h=s=0 and &9 is a positive scalar. P
is positive definite, since {A,B} is controllable and Q
positive definite.

Taking the derivative of (2.8) along the solution (2.6)

yields
. h - ox(t) ’ x(t)
V(xt)=j [x(t-r)} [M:' |:x(t-t):|dt
0 = x(t-h) x(t- h)
where
(A-Bl(l)’l’*l’(A-BK1 )2 81 hPBKs( T) PBK2
M= hK,(7)B'P -81 0
K,"B'P 0 81

Combining the asbove equation with (2.4) yields

PBB'P + Q - 241 —hiBKa(r) -iBK2

- bKy(7 )’B’P Bl 0
- Kz’B'P 0 A1

Conditions for sign definiteness of partitioned matrices [6]
show that the matrix [M] is negative definite if

Q-ZA?I+§BB’§-/?_1§BK1K1’B’E-A?_lhzﬁBKa( T )Ky(7)BP >0
Now, by the property of P >0 (because of Q >0), this may be
transformed to

PB[ #1-K,K "hoKa(7 Ko ) IBP+B(Q-281) X0 (2.10)

272

On the other hand, assume a positive scalar S that satisfies

- ,
B8 >Amax[ 1(2K2 +h K3(t)K3(r) 1,0=7<h (2.11)

Take Q satisfies Q > 281, then
s 2
Q >2Amax[ K2K2 +h Ka(r)Ks(r) 11 ,0sr=<h

By using (2.11),(2.12), inequality (2.10) is always satisfied.
This implies that the system (2.1) with the control law (2.5)
is asymptotically stable. This completes the proof.

This result indicates that the system (2.1) with the
delayed state feedback control law (2.3) is always
asymptotically stable under the condition that controller
gains KI’K2 and K3( T ) satisfy (2.7).

Remark: If only a single delayed state in feedback control
loop is used, the control law (2.5) can be written as
u(t) = ‘le(t) - sz(i‘h) (2.13)
where K, = -B’P. This control law (2.13) should be easier
to implement than (2.5). In this case, sufficient condition
for stabilization of the system (2.1) is

Q >/\max[ K2K2’ 1-1 (2.14)
Thus the controller gain K2 can be chosen easily under
this condition (2.14),

From now, we will consider only a single delayed state

feedback controller in the following analysis, since the
effects of the additional delay may be similar whether

distributed delays are added to or a single delay is added to
the feedback loop.

3. Robustness against parameter variation

In this section,for the case when there is parameter
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variations,the conventional LQR(Linear Quadratic Regulator)
and the delayed state feedback control system are compared
with,

The LQR was considered to be robust against parameier
variations because of iis guaranieed gain and phase margins.
But in spite of ils remarkable stability margins, the LQR may
have poor stabilily margins, which have been shown in Seroka
and Shaked[7], where the LQR with the cheap optimal control
may acquire far off unstable modes due to small plant
paramefer variations.

With model (2.1), we consider the modeling error AA,AB.
Then the real plant is represented by

x(t) = (A + A8) x(t) + (B + AB) u(t) (3.1)

The guaranteed bound of allowable modeling errors in the LQR
is as following. These results are represented in Patel,Toda
and Sridhar[8]. In the LQR, the resulting closed loop system
is asymptotically stable if the following inequalities holds

TN < 1/ E(PL) =Ml ( AB=0) (3.2)
TAB) < LA GRDTKD) M (AM0)  (3.3)

where o (- ) and ;F( ) denote the maximum and the minimum
singular values and PL is the solution of a Lyapunov equation,

( A-Bl(1 )’PL + PL( A—BKl y=-2 In (3.4)

conditions, as approaches

Without matching K
the bound of é(AA) tends to

infinity(,which implies Q—+o0),
finite but does not grow infinite. On the other hand, in this
case, the bound of T(AB) tends to zero since P, does not
tends fo zero. Thus the closed loop system in LhR may be
unstable due to an arbitrary small modeling error in B (AB).

Now in this case, consider the delayed state feedback
control system. The following theorem represents the
guaranteed bounds due to modeling errors in B when the delayed
state feedback control law (2.13) is applied to the real plant
(3.1).

Theorem 3.1 : Assume that AA=0 and control (2.13) is applied
to (3.1). Then the resulting closed loop system is
asymptotically stable if the following inequalitie hold.

o (AB)< M3 (3.5)
where
- a(bre) + (a-2¢%) D2
N3 = - (3.6)
a(a-c")
D = a(i-d) + b2+2be + cd (3.0
s - ‘?Z“’L) : ;2<K2> (3.8)
b= TR EZ(K2)< ) (3.9)
¢- TR TK) (3.10)
d- EZ(PLB)A 32(K2) (3.11)
TK ) * T(Ky) * 0 (3.12)

proof : From (2.13) and (3.1), the resulting closed loop
system can be written as

x(t) = (A-BKI)x(t)*ZXBle(t)*Ble(t*h)fszsz(t-h) (3.13)
We choose as a Lyapunov function
t
(3.14)

V(xt) = x(t)’PLx(t)+}9 S x(s)’x(s) ds
t-h



Its derivative along the solution of (3.13) is

x(t) 7 x()
L) )
x(t-h) x(1-h)

[(2-17)I*(szKl)’PL*PL(zxﬁxl)’ ) -PL(B+AB)K2J
Ky (B+AB) P , Bl

V(xt) (3.15)

where, [N]

Block matrix [N] is negative definite[13] if
2R81 + B[ KI’AB’PL + PLABK1 ]
2 P s AR
> Bl + PLBKzKZ B PL + PLABKZK2 AB PL

s 3.1
+ PLABK K, B'P + P BKK (3.16)

L BKoKy"ABPY

Taking the singular value to (3.16), we get

Fram -1 7ty 1
(OB - [ FR)TAA)TEB) + BTRYTK) ]

o 8% 23 mFtKy 1< 0 (3.47)

This implies
T(AB) < g(8) (3.18)
where

b Bl (brBo)P-a(8228+0) 11/

g(B)= (3.19)

3
In order &o maximize the  guaranieed bound g(#) of AB, we
choose A~ such that g( 8 )=0, where get g( B ), that is, the
maximum guaranteed bound of A\B,as follows.

-a(bre) + (a-2¢%) pi/*

g(8%)= N3 - ;
a(a-c")
' a(1-d) + bPe2be + %
2 - ThR) - ThKY
b F(B) - Tk TRB)
c= TR T(K)
d- e - 7Ry

(K 1) * ;(Kz) 0
This completes the proof.

By comparing M2 of (3.3) with M3, we can see that M2 is
less than M3, Moreover, without matching condition, the bound
of F(AB) in LQR tends to zero as Qo (cheap
control),but,on the other hand, the bound of T(AB) in the
delayed state feedback control system converses to a finite
value for infinite Q.

From the above fact,we can conclude that ,if delayed
states.are added to the feedback loop of the LQR, the
resulting closed loop system may be robust than the

conventional LQR against the modeling error (AB).
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4. Transient behavior and disturbance rejection

In this section, we consider the improvement in the
transient behavior of the system and ihe effect of the
disturbance rejection with delayed state feedback control law.

It is well-known that by state feedback controller pole
locations can be moved to any region in left half plane but
zero locations can not be affected. However the propesed
delayed state feedback conroller can affect zero locations as
well as pole locations in the closed loop transfer function ,
since the existence of delays included in the feedback loop
generates infinite number of poles and zeros[9].

The location of these zeros which are added to open loop
zeros can have a drastic effect on the shape of the transients
[101, and therefore the appropriate use of the delayed state
may produce improvements in the {ransient response of the
system. These new transmission zeros, the location of which
can be controlled to selecting h, can be approximated by lower
order Padé approximation{9). For example, tc approximate the

delay operator exp(-hs), let us use 2nd order Pade
approximation, as follows,
L-h2-s+pneest Q)
exp(-hs) = 3 ' (4.1)
1+h2 s+h/12-s P(s)

Using this approximation, the resulting closed loop system
transfer function, where control law is used (2.13), is given

by
H(s) = C[ sI-ABK *BK,exp(-hs) 1B
= P(s)CL sI-ABK *BK,Q(s)] B (4.2)
Thus )
P(s)detl C(si-A) B Jdet(sI-A)
det[Hc(s)]=
det[ (s1-MBK P(s) + BK,A(s) ]
¢(s)
- 4.3
#(s) “.9

From denominator ¢ (s), the new {iransmission zeros added to
open loop zero are given by the roots of P(s)=0 ,that is,

3l/2

h

s + LhF0 (4.4)

3

h
Since the additional zeros in (4.4) is minimum phase zero, the
resulting closed loop has a fast settling time property(10].
Therefore we can conclude that the system employing the
delayed state feedback control law may be better than the
conventional LQR from the view point of the fransient response
behavior,

The above approach will be extended to the delayed state
feedback control system used distributed delays in the same
manner of a single delay. In this case, additional zeros
added to open loop zeros are as follows

3 31/2 3 31/2
Lim - — * — e s e—k — (4.5)
&—0 & 8 , , h h

the effect of the disturbance rejection with
For the case when there is

Now consider
delayed state feedback controller.
a sustained input disturbance,the conventional LQR cannot
attain and maintain the desired equilibrium conditions. It
can be done by the inclusion of a feedback path containing a
single integration to reject a constant disturbance, where the
form of the control law is as follows[15]

t

u(t)= 'F1X(t)'F2§ OX( z)d T +f(x(10)) (4.6)
{



On the other hand, the proposed controller (2.5) may be
expressed as follows
t
u(t)= -le(t)—K3 S x(z)d r+K2x(t~h) 4.7
i-h

If h tends to a sufficient large value, so thai approaches to
initial time (t,), one can find the similarity (4.6) to
(4.7),which imp?ies that by appropriatly selected parameters

(h,X,,K,,K,( - )) the property of the disturbance
002 .
rejection may be achived.
Consequently, for the case when coniroller design
parameters are chosen in a suitable manner,the asymptotic

stability of the closed loop system is always guaranteed and
additional delayed states in feedback loop are to increase the
robustness against parameter variation(AB), improve the
transient response of the sysiem and considerably accommodate
input disturbances. The performance of the delayed state
feedback control system compared with the conventional LaR is
shown in Fig.1

As a simple example, consider the problem of stabilizing 2
scalar system

x(t) = 2 x(t) + 1.5 x(t) (4.8)
by the delayed state feedback control
u(t) = - 1.5 P x(t) - 1.2 x(i-b) (4.9)

where Q is chosen so that the condition (2.14) is satisfied,
as Q=3. For differents values of h, the response of x(t) is
represented Fig 1 (a),(b).

5. Conclusion
It was known that intentional time delays included in the

feedback path may improve the transient response of the system
but ,due to time delays, the overall system may be unstable.

[n this paper, by the Lyapunov functional approach, the
delay state feedback controller is proposed ,which always
guaranles the stability of the overall sysiem. Several

characteristics, such as the robustness,the transient behavior
and disturbance rejection, are investigated.

By the use of delayed states the better performance can be
achived in comparison with the conventional memoryless state
feedback controllers when coniroller gains are determined
according to the proposed method in this paper.

These result can be extended to the state observation probiem,
where the delayed observation may be used for the better
performance of the state observation.
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