• Title/Summary/Keyword: stand-alone inverter

Search Result 65, Processing Time 0.032 seconds

The research for appropriate input capacitor selection of PV inverter in Distributed Generation (분산전원 PV 인버터의 적절한 입력커패시터 선정 고찰)

  • Lee, Kyung-Soo;Jung, Young-Seck;Kang, Gi-Hwan;Yu, Gwon-Jong;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.259-261
    • /
    • 2003
  • Generally, there is an input capacitor in front of PV(Photovoltaic) inverter in DG(Distributed Generation). This input capacitor mainly works in order to stabilize the PV output voltage. However, input capacitors, which are being used in domestic market are not well known about their appropriate value and also there is no information for selecting the suitable value of input capacitor. Therefore, the author suggests that the stand-alone PV inverter is considered to analyse appropriate value of input capacitor and then recommends the appropriate value of input capacitor through simulation.

  • PDF

Stand alone type Fuel Cell generation system controlled by micro-processor (마이크로프로세서에 의해 제어되는 독립형 연료전지용 전력변환 회로 설계)

  • 이원철;이태원;장수진;김진태;문승필;원충연
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.63-68
    • /
    • 2003
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell generation system converts the chemical energy of a fuel directly into electrical energy. The fuel cell generation is characterized by low voltage and high current. For connecting to general load, it needs both a step up converter and an inverter. The step up converter makes DC to DC and the inverter changes DC to AC. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experimental results are displayed under several load conditions.

  • PDF

Performance Testing of the Permanent Magnet Generator and Grid Inverter (영구자석형 발전기와 계통연계형 인버터의 성능실험)

  • Kim, Hyoung-Gil;Kim, Chul-Ho;Seo, Young-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.679-680
    • /
    • 2008
  • Most of the small wind turbines are set as the stand alone type in the area where the access to the grid is difficult and compulsorily uses the battery. Depending on the volume of the battery, securing of the space necessary, and has the shortcoming of replacing the battery periodically due to it's limited working life span. Recently, setting up in the vicinity of the city area is increasing and the trend of using the Grid inverter instead of battery is also increasing. This thesis is aiming mainly analyzing the characteristics of the output power of the Prototype Permanent Magnet Generator(PMG) and the Grid-Inverter and to verify through the theoretical study and tests. Tested the characteristics of the output power of the PMG through the stage 1-2 and at the stage 3 connected the output of the PMG to the Inverter and tested the characteristics of the Inverter. And at the stage 4, the maximum output power is confirmed by the continuous running test of the PMG.

  • PDF

Single-Phase Utility-Interactive Inverter for Residential Fuel Cell Generation System (가정용 연료전지 발전 시스템을 위한 단상 계통연계형 인버터)

  • Jung, Sang-Min;Bae, Young-Sang;Yu, Tae-Sik;Kim, Hyo-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • In this paper, a new single-phase utility-interactive inverter system for residential power generation with fuel cell is proposed. The proposed inverter system is not only capable of working in both stand-alone and grid-connected mode, but also ensures smooth and automatic transfer between the two modes of operation. The proposed control method has little steady-state error and good transient response characteristic. Also, the control method can be implemented using low-cost, fixed point DSP since it has simpler structure, smaller amount of calculation, and smaller number of sensors. The controller for the proposed utility-interactive inverter system is described, and the validity is verified through simulation and experiment.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

Anti-islanding Method by Harmonic Injection for Utility Interactive Inverter with Critical Load (중요부하를 갖는 계통연계형 인버터의 고조파주입에 의한 단독운전방지 기법)

  • Oh, Hyeong-Min;Choi, Se-Wan;Kim, Tae-Hee;Lee, Gi-Pung;Lee, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • The utility-interactive inverter with critical loads should supply continuous and stable voltage to critical loads even during the grid fault. The conventional control method which performs current control for grid-connected mode and voltage control for stand-alone mode undergoes the critical load voltage variation during grid fault. The critical load voltage may have large transient when the inverter performs mode transfer after the islanding detection. Recently, the indirect current control method which does not have the transient state during not only islanding detection but also the mode transfer has been proposed. However, since the voltage control is maintained even during the grid-connected mode it is difficult to detect the islanding. This paper proposes an active anti-islanding method suitable for the indirect current control method which does not have NDZ(Non-Detection Zone).

Optimized LCL filter Design Method of Utility Interactive Inverter (계통연계형 인버터의 LCL필터 최적 설계기법)

  • Jung, Sang-Hyuk;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2013
  • The conventional LCL filter design method of the utility interactive inverter considers only harmonics attenuation of the current injected to the grid. However, in case of utility-interactive inverter with critical load the voltage quality of the critical load should also be considered for LCL filter design. Also, considering cost and volume of LCL filters. it is important to have minimum values of inductance and capacitance as far as the harmonic standards are satisfied. In this paper a LCL filter design method is proposed to satisfy not only the harmonic standards of the grid current during the grid-connected mode but the voltage quality of the critical load during grid-connected mode and stand-alone mode. With the proposed method optimized values of LCL filters could be obtained by applying weighting factor to voltage ripple across the critical load, inductor volume, amount of reactive current and system bandwidth.

Design and Verification of Improved Cascaded Multilevel Inverter Topology with Asymmetric DC Sources

  • Tarmizi, Tarmizi;Taib, Soib;Desa, M.K. Mat
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1074-1086
    • /
    • 2019
  • This paper presents the design and implementation of an improved cascaded multilevel inverter topology with asymmetric DC sources. This experimental inverter topology is a stand-alone system with simulations and experiments performed using resistance loads. The topology uses four asymmetric binary DC sources that are independent from each other and one H-bridge. The topology was simulated using PSIM software before an actual prototype circuit was tested. The proposed topology was shown to be very efficient. It was able to generate a smooth output waveform up to 31 levels with only eight switches. The obtained simulation and experimental results are almost identical. In a 1,200W ($48.3{\Omega}$) resistive load application, the THDv and efficiency of the topology were found to be 1.7% and 97%, respectively. In inductive load applications, the THDv values were 1.1% and 1.3% for an inductive load ($R=54{\Omega}$ dan L=146mH) and a 36W fluorescent lamp load with a capacitor connected at the dc bus.

Stand-Alone PV System by Parallel Operation Control of Current-Source Inverter without Battery (전류원 인버터의 병렬운전에 의한 축전지 없는 태양광 시스템의 구성)

  • 박성준;김종달
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.291-297
    • /
    • 2003
  • This paper presents a current-source-inverter based on a buck-boost configuration and its application for residential photovoltaic system. The proposed circuit has five switches. Among them, only one switch acts as chopping, and the other determine the polarity of output; therefore, it can reduce the switching loss. Because the input inductor current is operated on the discontinuous conduction mode, high power factor can be achieved without additional input current controller. So the overall system shows a simple structure. The operational modes are analysed in depth, and then it was verified through the experimental results using a 150 [W] prototype equipped with digital signal processor TMS320F241.