• Title/Summary/Keyword: stacked gate oxide

Search Result 16, Processing Time 0.022 seconds

Current Sensing Trench Gate Power MOSFET for Motor Driver Applications (모터구동 회로 응용을 위한 대전력 전류 센싱 트렌치 게이트 MOSFET)

  • Kim, Sang-Gi;Park, Hoon-Soo;Won, Jong-Il;Koo, Jin-Gun;Roh, Tae-Moon;Yang, Yil-Suk;Park, Jong-Moon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • In this paer, low on-resistance and high-power trench gate MOSFET (Metal-Oxide-Silicon Field Effect Transistor) incorporating current sensing FET (Field Effect Transistor) is proposed and evaluated. The trench gate power MOSFET was fabricated with $0.6{\mu}m$ trench width and $3.0{\mu}m$ cell pitch. Compared with the main switching MOSFET, the on-chip current sensing FET has the same device structure and geometry. In order to improve cell density and device reliability, self-aligned trench etching and hydrogen annealing techniques were performed. Moreover, maintaining low threshold voltage and simultaneously improving gate oxide relialility, the stacked gate oxide structure combining thermal and CVD (chemical vapor deposition) oxides was adopted. The on-resistance and breakdown voltage of the high density trench gate device were evaluated $24m{\Omega}$ and 100 V, respectively. The measured current sensing ratio and it's variation depending on the gate voltage were approximately 70:1 and less than 5.6 %.

Study of the Reliability Characteristics of the ONON(oxide-nitride-oxide-nitride) Inter-Poly Dielectrics in the Flash EEPROM cells (플래시 EEPROM 셀에서 ONON(oxide-nitride-oxide-nitride) Inter-Poly 유전체막의 신뢰성 연구)

  • Shin, Bong-Jo;Park, Keun-Hyung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.17-22
    • /
    • 1999
  • In this paper, the results of the studies about a new proposal where the ONON(oxide-nitride-oxide-nitride) layer instead of the conventional ONO(oxide-nitride-oxide) layer is used as the IPD(inter-poly-dielectrics) layer to improve the data retention problem in the Flash EEPROM cell, have been discussed. For these studies, the stacked-gate Flash EEPROM cell with an about 10nm thick gate oxide and on ONO or ONON IPD layer have been fabricated. The measurement results have shown that the data retention characteristics of the devices with the ONO IPD layer are significantly degraded with an activation energy of 0.78 eV. which is much lower than the minimum value (1.0 eV) required for the Flash EEPROM cell. This is believed to be due to the partial or whole etching of the top oxide of the IPD layer during the cleaning process performed just prior to the dry oxidation process to grow the gate oxide of the peripheral MOSFET devices. Whereas the data retention characteristics of the devices with the ONON IPD layer have been found to be much (more than 50%) improved with an activation energy of 1.10 eV. This must be because the thin nitride layer on the top oxide layer in the ONON IPD layer protected the top oxide layer from being etched during the cleaning process.

  • PDF

Investigation of threshold voltage change due to the influence of work-function variation of monolithic 3D Inverter with High-K Gate Oxide (고유전율 게이트 산화막을 가진 적층형 3차원 인버터의 일함수 변화 영향에 의한 문턱전압 변화 조사)

  • Lee, Geun Jae;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.118-120
    • /
    • 2022
  • This paper investigated the change of threshold voltage according to the influence of work-function variation (WFV) of metal gate in the device structure of monolithic 3-dimension inverter (M3DINV). In addition, in order to investigate the change in threshold voltage according to the electrical coupling of the NMOS stacked on the PMOS, the gate voltages of PMOS were applied as 0 and 1 V and then the electrical coupling was investigated. The average change in threshold voltage was measured to be 0.1684 V, and they standard deviation was 0.00079 V.

  • PDF

Improved Electrical Characteristics of Symmetrical Tunneling Dielectrics Stacked with SiO2 and Si3N4 Layers by Annealing Processes for Non-volatile Memory Applications (비휘발성 메모리를 위한 SiO2와 Si3N4가 대칭적으로 적층된 터널링 절연막의 전기적 특성과 열처리를 통한 특성 개선효과)

  • Kim, Min-Soo;Jung, Myung-Ho;Kim, Kwan-Su;Park, Goon-Ho;Jung, Jong-Wan;Chung, Hong-Bay;Lee, Young-Hie;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.386-389
    • /
    • 2009
  • The electrical characteristics and annealing effects of tunneling dielectrics stacked with $SiO_2$ and $Si_{3}N_{4}$ were investigated. I-V characteristics of band gap engineered tunneling gate stacks consisted of $Si_{3}N_{4}/SiO_2/Si_{3}N_{4}$ (NON), $SiO_2/Si_{3}N_{4}/SiO_2$ (ONO) dielectrics were evaluated and compared with $SiO_2$ single layer using the MOS (metal-oxide-semiconductor) capacitor structure. The leakage currents of engineered tunneling barriers (ONO, NON stacks) are lower than that of the conventional $SiO_2$ single layer at low electrical field. Meanwhile, the engineered tunneling barriers have larger tunneling current at high electrical field. Furthermore, the increased tunneling current through engineered tunneling barriers related to high speed operation can be achieved by annealing processes.

Effect of Hydroxyl Ethyl Cellulose Concentration in Colloidal Silica Slurry on Surface Roughness for Poly-Si Chemical Mechanical Polishing

  • Hwang, Hee-Sub;Cui, Hao;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.545-545
    • /
    • 2008
  • Poly-Si is an essential material for floating gate in NAND Flash memory. To fabricate this material within region of floating gate, chemical mechanical polishing (CMP) is commonly used process for manufacturing NAND flash memory. We use colloidal silica abrasive with alkaline agent, polymeric additive and organic surfactant to obtain high Poly-Si to SiO2 film selectivity and reduce surface defect in Poly-Si CMP. We already studied about the effects of alkaline agent and polymeric additive. But the effect of organic surfactant in Poly-Si CMP is not clearly defined. So we will examine the function of organic surfactant in Poly-Si CMP with concentration separation test. We expect that surface roughness will be improved with the addition of organic surfactant as the case of wafering CMP. Poly-Si wafer are deposited by low pressure chemical vapor deposition (LPCVD) and oxide film are prepared by the method of plasma-enhanced tetra ethyl ortho silicate (PETEOS). The polishing test will be performed by a Strasbaugh 6EC polisher with an IC1000/Suba IV stacked pad and the pad will be conditioned by ex situ diamond disk. And the thickness difference of wafer between before and after polishing test will be measured by Ellipsometer and Nanospec. The roughness of Poly-Si film will be analyzed by atomic force microscope.

  • PDF

Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors (터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구)

  • Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.682-687
    • /
    • 2022
  • In this paper, the research results on monolithic three-dimensional integrated-circuit (M3DICs) stacked with tunneling field effect transistors (TFETs) are introduced. Unlike metal-oxide-semiconductor field-effect transistors (MOSFETs), TFETs are designed differently from the layout of symmetrical MOSFETs because the source and drain of TFET are asymmetrical. Various monolithic 3D inverter (M3D-INV) structures and layouts are possible due to the asymmetric structure, and among them, a simple inverter structure with the minimum metal layer is proposed. Using the proposed M3D-INV, this M3D logic gates such as NAND and NOR gates by sequentially stacking TFETs are proposed, respectively. The simulation results of voltage transfer characteristics of the proposed M3D logic gates are investigated using mixed-mode simulator of technology computer aided design (TCAD), and the operation of each logic circuit is verified. The cell area for each M3D logic gate is reduced by about 50% compared to one for the two-dimensional planar logic gates.