• Title/Summary/Keyword: stability equations

Search Result 1,364, Processing Time 0.028 seconds

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO STOCHASTIC 3D GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH UNBOUNDED DELAYS

  • Cung The Anh;Vu Manh Toi;Phan Thi Tuyet
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.227-253
    • /
    • 2024
  • This paper studies the existence of weak solutions and the stability of stationary solutions to stochastic 3D globally modified Navier-Stokes equations with unbounded delays in the phase space BCL-∞(H). We first prove the existence and uniqueness of weak solutions by using the classical technique of Galerkin approximations. Then we study stability properties of stationary solutions by using several approach methods. In the case of proportional delays, some sufficient conditions ensuring the polynomial stability in both mean square and almost sure senses will be provided.

Analysis of Stability for Overhead Crane Systems (천정 크레인시스템의 안정성 해석)

  • Ban Gab Su;Lee Kwang Ho;Mo Chang Ki;Lee Jong Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.128-135
    • /
    • 2005
  • Overhead crane systems consist of trolley, girder, rope, objects, trolley motor, girder motor, and hoist motor. The dynamic system of these systems becomes a nonlinear state equations. These equations are obtained by the nonlinear equations of motion which are derived from transfer functions of driving motors and equations of motion for objects. From these state equations, Lyapunov functions of overhead crane systems are derived from integral method. These functions secure stability of autonomous overhead crane systems. Also constraint equations of driving motors of trolley, girder, and hoist are derived from these functions. From the results of computer simulation, it is founded that overhead crane systems is secure.

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part I - Euler Equations (비정렬 격자계에서 LU Implicit Scheme의 수렴성 및 안정성 해석 : Part I-오일러 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Euler equations on unstructured meshes. The von Neumann stability analysis technique was initially applied to a scalar model equation, and then the analysis was extended to the Euler equations. The results indicated that the convergence rate is governed by a specific combination of flow parameters. Based on this insight, it was shown that the LU scheme does not suffer any convergence deterioration at all grid aspect ratios, as long as the local time step is defined using an appropriate parameter combination.

Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (Waviness가 있는 볼베어링으로 지지된 회전계의 안정성 해석)

  • 정성원;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-189
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i= 1,2,3..).

  • PDF

GENERALIZED DISCRETE HALANAY INEQUALITIES AND THE ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE SYSTEMS

  • Xu, Liguang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1555-1565
    • /
    • 2013
  • In this paper, some new generalized discrete Halanay inequalities are established. On the basis of these new established inequalities, we obtain the attracting set and the global asymptotic stability of the nonlinear discrete systems. Our results established here extend the main results in [R. P. Agarwal, Y. H. Kim, and S. K. Sen, New discrete Halanay inequalities: stability of difference equations, Commun. Appl. Anal. 12 (2008), no. 1, 83-90] and [S. Udpin and P. Niamsup, New discrete type inequalities and global stability of nonlinear difference equations, Appl. Math. Lett. 22 (2009), no. 6, 856-859].

STABILITY IN NONLINEAR NEUTRAL LEVIN-NOHEL INTEGRO-DIFFERENTIAL EQUATIONS

  • Khelil, Kamel Ali;Ardjouni, Abdelouaheb;Djoudi, Ahcene
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.303-321
    • /
    • 2017
  • In this paper we use the Krasnoselskii-Burton's fixed point theorem to obtain asymptotic stability and stability results about the zero solution for the following nonlinear neutral Levin-Nohel integro-differential equation $$x^{\prime}(t)+{\displaystyle\smashmargin{2}{\int\nolimits_{t-{\tau}(t)}}^t}a(t,s)g(x(s))ds+c(t)x^{\prime}(t-{\tau}(t))=0$$. The results obtained here extend the work of Mesmouli, Ardjouni and Djoudi [20].

Effects of elastic foundation on the dynamic stability of cylindrical shells

  • Ng, T.Y.;Lam, K.Y.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.193-205
    • /
    • 1999
  • A formulation for the dynamic stability analysis of cylindrical shells resting on elastic foundations is presented. In this previously not studied problem, a normal-mode expansion of the partial differential equations of motion, which includes the effects of the foundation as well as a harmonic axial loading, yields a system of Mathieu-Hill equations the stability of which is analyzed using Bolotin's method. The present study examines the effects of the elastic foundation on the instability regions of the cylindrical shell for the transverse, longitudinal and circumferential modes.

LINEAR MAPPINGS IN BANACH MODULES OVER A UNITAL C*-ALGEBRA

  • Lee, Jung Rye;Mo, Kap-Jong;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.221-238
    • /
    • 2011
  • We prove the Hyers-Ulam stability of generalized Jensen's equations in Banach modules over a unital $C^{\ast}$-algebra. It is applied to show the stability of generalized Jensen's equations in a Hilbert module over a unital $C^{\ast}$-algebra. Moreover, we prove the stability of linear operators in a Hilbert module over a unital $C^{\ast}$-algebra.

ON THE STABILITY OF THE GENERAL SEXTIC FUNCTIONAL EQUATION

  • Chang, Ick-Soon;Lee, Yang-Hi;Roh, Jaiok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.295-306
    • /
    • 2021
  • The general sextic functional equation is a generalization of many functional equations such as the additive functional equation, the quadratic functional equation, the cubic functional equation, the quartic functional equation and the quintic functional equation. In this paper, motivating the method of Găvruta [J. Math. Anal. Appl., 184 (1994), 431-436], we will investigate the stability of the general sextic functional equation.

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.