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LINEAR MAPPINGS IN BANACH
MODULES OVER A UNITAL C∗–ALGEBRA

Jung Rye Lee*, Kap-Jong Mo**, and Choonkil Park***

Abstract. We prove the Hyers-Ulam stability of generalized Jensen’s equa-
tions in Banach modules over a unital C∗-algebra. It is applied to show the
stability of generalized Jensen’s equations in a Hilbert module over a unital
C∗-algebra. Moreover, we prove the stability of linear operators in a Hilbert
module over a unital C∗-algebra.

1. Generalized Jensen’s equations

Given a locally compact abelian group G and a multiplier ω on G, one

can associate to them the twisted group C∗-algebra C∗(G,ω). C∗(Zm, ω)

is said to be a noncommutative torus of rank m and denoted by Aω. The

multiplier ω determines a subgroup Sω of G, called its symmetry group, and

the multiplier is called totally skew if the symmetry group Sω is trivial.

And Aω is called completely irrational if ω is totally skew (see [2]). It was

shown in [2] that if G is a locally compact abelian group and ω is a totally

skew multiplier on G, then C∗(G,ω) is a simple C∗-algebra. It was shown

in [7, Theorem 1.5] that if Aω is a completely irrational noncommutative

torus, then Aω has stable rank 1, where “stable rank 1” means that the set

of invertible elements is dense in the given C∗-algebra.

Let E1 and E2 be Banach spaces. Consider f : E1 → E2 to be a mapping

such that f(tx) is continuous in t ∈ R for each fixed x ∈ E1. Assume that

there exist constants ε ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(||x||p + ||y||p)
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for all x, y ∈ E1. Th.M. Rassias [14] showed that there exists a unique

R-linear mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
||x||p

for all x ∈ E1.

Lemma A. Let V and W be vector spaces, and let d, s, t be positive

integers. A mapping f : V → W with f(0) = 0 is a solution of the equation

(A) df(
sx + ty

d
) = sf(x) + tf(y)

for all x, y ∈ V if and only if the mapping f : V → W satisfies the additive

Cauchy equation f(x + y) = f(x) + f(y) for all x, y ∈ V .

Proof. Assume that f : V → W satisfies the equation (A). Then

df(
s

d
x) = df(

sx + t · 0
d

) = sf(x) + tf(0) = sf(x),

df(
t

d
x) = df(

s · 0 + tx

d
) = sf(0) + tf(x) = tf(x)

for all x ∈ V . So

f(
s

d
x) =

s

d
f(x) & f(

t

d
x) =

t

d
f(x)

for all x ∈ V . And

f(x) = f(
s

d
· d

s
x) =

s

d
f(

d

s
x),

f(x) = f(
t

d
· d

t
x) =

t

d
f(

d

t
x)

for all x ∈ V . So

f(
d

s
x) =

d

s
f(x) & f(

d

t
x) =

d

t
f(x)

for all x ∈ V . Thus

f(x + y) =
1
d
· df(

s

d
· d

s
x +

t

d
· d

t
y) =

1
d
(sf(

d

s
x) + tf(

d

t
y))

=
1
d
(s · d

s
f(x) + t · d

t
f(y)) = f(x) + f(y)
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for all x, y ∈ V .

Conversely, assume that f : V → W satisfies the additive Cauchy equa-

tion. Since f(sx) = df( s
dx) for all x ∈ V ,

f(
s

d
x) =

1
d
f(sx) =

s

d
f(x)

for all x ∈ V . Similarly, one can show that

f(
t

d
y) =

1
d
f(ty) =

t

d
f(y)

for all y ∈ V . So f( sx+ty
d ) = f( s

dx)+f( t
dy) = s

df(x)+ t
df(y) for all x, y ∈ V .

Thus

df(
sx + ty

d
) = sf(x) + tf(y)

for all x, y ∈ V . ¤

Throughout this paper, let A be a unital C∗-algebra with norm | · |,
and let AB and AD be left Banach A-modules with norms || · || and ‖ · ‖,
respectively. Let s, t be different positive integers, d a positive integer, and

ϕ : AB × AB → [0,∞) a function such that

(i) ϕ̃(x, y) :=
∞∑

k=0

(
t

s
)2kϕ((

s

t
)2kx, (

s

t
)2ky) < ∞

for all x, y ∈ AB. Let A s
d

= {a ∈ A | |a| = s
d}, Ain the set of invertible

elements in A, A+
s
d

the set of positive elements in A s
d
, U(A) the set of unitary

elements in A, s
dU(A) = { s

du | u ∈ U(A)}, and AH a left Hilbert A-module

with norm ‖ · ‖.
Kadison and Pedersen [12] showed the following.

Lemma B [12, Theorem 1]. Let a ∈ A and |a| < 1− 2
m for some integer

m greater than 2. Then there are m unitary elements u1, u2, · · · , um ∈ A

such that ma = u1 + u2 + · · ·+ um.

In this paper, we prove the Hyers-Ulam stability of the functional equa-

tion (A) in Banach modules over a unital C∗-algebra.
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2. Stability of generalized Jensen’s equations in Banach modules

over a C∗-algebra

Theorem 2.1. Let f : AB → AD be a mapping with f(0) = 0 such that

(ii) ‖df(
sx + ty

d
)− sf(x)− tf(y)‖ ≤ ϕ(x, y)

for all x, y ∈ AB. Then there exists a unique additive mapping T : AB → AD
such that

(iii) ‖f(x)− T (x)‖ ≤ 1
s
ϕ̃(x,−s

t
x) +

t

s2
ϕ̃(−s

t
x, (

s

t
)2x)

for all x ∈ AB. Furthermore, if f(λx) is continuous in λ ∈ R for each fixed

x ∈ AB, then the additive mapping T : AB → AD is R-linear.

Proof. Let x ∈ AB. For y = − s
t x, the inequality (ii) implies

(1) ‖sf(x) + tf(−s

t
x)‖ ≤ ϕ(x,−s

t
x).

Replacing x by − s
t x and y by ( s

t )
2x, the inequality (ii) implies

(2) ‖sf(−s

t
x) + tf((

s

t
)2x)‖ ≤ ϕ(−s

t
x, (

s

t
)2x).

From (1) and (2), we get

‖f(x)− (
t

s
)2f((

s

t
)2x)‖ ≤ 1

s
ϕ(x,−s

t
x) +

t

s2
ϕ(−s

t
x, (

s

t
)2x).

Applying the induction argument on n, we obtain

‖f(x)− (
t

s
)2nf((

s

t
)2nx)‖ ≤

n−1∑

k=0

(
1
s
(
t

s
)2kϕ((

s

t
)2kx,−(

s

t
)2k+1x)

+
1
s
(
t

s
)2k+1ϕ(−(

s

t
)2k+1x, (

s

t
)2k+2x)).(3)

We claim that the sequence {( t
s )2nf(( s

t )
2nx)} is a Cauchy sequence. In-

deed, for n > m, we have

‖( t

s
)2nf((

s

t
)2nx)− (

t

s
)2mf((

s

t
)2mx)‖

≤
n−1∑

k=m

‖( t

s
)2k+2f((

s

t
)2k+2x)− (

t

s
)2kf((

s

t
)2kx)‖

≤
n−1∑

k=m

(
1
s
(
t

s
)2kϕ((

s

t
)2kx,−(

s

t
)2k+1x)

+
1
s
(
t

s
)2k+1ϕ(−(

s

t
)2k+1x, (

s

t
)2k+2x)).
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From (i), it follows that

lim
m→∞

n−1∑

k=m

(
1
s
(
t

s
)2kϕ((

s

t
)2kx,−(

s

t
)2k+1x)

+
1
s
(
t

s
)2k+1ϕ(−(

s

t
)2k+1x, (

s

t
)2k+2x)) = 0.

Since AD is a Banach space, the sequence {( t
s )2nf(( s

t )
2nx)} converges. De-

fine

T (x) = lim
n→∞

(
t

s
)2nf((

s

t
)2nx)

for all x ∈ AB. Taking the limit in (3) as n →∞, we obtain

‖f(x)− T (x)‖ ≤ 1
s
ϕ̃(x,−s

t
x) +

t

s2
ϕ̃(−s

t
x, (

s

t
)2x)

for all x ∈ AB. This completes the proof of the inequality (iii). From the

definition of T, we get

(4) (
s

t
)2nT (x) = T ((

s

t
)2nx) and T (0) = 0.

From (i), (ii), and the definition of T ,

‖dT (
sx + ty

d
)− sT (x)− tT (y)‖

= lim
n→∞

(
t

s
)2n‖df((

s

t
)2n sx + ty

d
)− sf((

s

t
)2nx)− tf((

s

t
)2ny)‖

≤ lim
n→∞

(
t

s
)2nϕ((

s

t
)2nx, (

s

t
)2ny) = 0

for all x, y ∈ AB. So

dT (
sx + ty

d
) = sT (x) + tT (y)

for all x, y ∈ AB. By Lemma A, T is additive.

If F : AB → AD is another additive mapping satisfying (iii), then it

follows from (iii), (4) and the proof of Lemma A that

‖T (x)− F (x)‖ = ‖( t

s
)2nT ((

s

t
)2nx)− (

t

s
)2nF ((

s

t
)2nx)‖

≤ ‖( t

s
)2nT ((

s

t
)2nx)− (

t

s
)2nf((

s

t
)2nx)‖

+ ‖( t

s
)2nf((

s

t
)2nx)− (

t

s
)2nF ((

s

t
)2nx)‖

≤ 2(
t

s
)2n(

1
s
ϕ̃((

s

t
)2nx, (

s

t
)2n(−s

t
)x) +

t

s2
ϕ̃((

s

t
)2n(−s

t
)x), (

s

t
)2n(

s

t
)2x)),
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which tends to zero as n →∞ by (i). Thus we conclude that

T (x) = F (x)

for all x ∈ AB. This completes the uniqueness of T .

Assume that f(λx) is continuous in λ ∈ R for each fixed x ∈ AB. By the

assumption, s
t is a rational number which is not an integer. The additive

mapping T given above is similar to the additive mapping T given in the

proof of [14, Theorem]. By the same reasoning as the proof of [14, Theorem],

the additive mapping T : AB → AD is R-linear. ¤

Corollary 2.2. Let 0 < p < 1 and t < s. Let f : AB → AD be a

mapping with f(0) = 0 such that

‖df(
sx + ty

d
)− sf(x)− tf(y)‖ ≤ ‖x‖p + ‖y‖p

for all x, y ∈ AB. Then there exists a unique additive mapping T : AB → AD
such that

‖f(x)− T (x)‖ ≤ s2(1−p)

s2(1−p) − t2(1−p)
(
1
s

+
1

tps1−p
+

t1−p

s2−p
+

t1−2p

s2−2p
)||x||p

for all x ∈ AB.

Proof. Define ϕ : AB×AB → [0,∞) by ϕ(x, y) = ||x||p + ||y||p, and apply

Theorem 2.1. ¤

Corollary 2.3. Let p > 1 and t > s. Let f : AB → AD be a mapping

with f(0) = 0 such that

‖df(
sx + ty

d
)− sf(x)− tf(y)‖ ≤ ‖x‖p + ‖y‖p

for all x, y ∈ AB. Then there exists a unique additive mapping T : AB → AD
such that

‖f(x)− T (x)‖ ≤ t2(p−1)

t2(p−1) − s2(p−1)
(
1
s

+
sp−1

tp
+

sp−1

tp−1
+

s2−2p

t2p−1
)||x||p

for all x ∈ AB.

Proof. Define ϕ : AB×AB → [0,∞) by ϕ(x, y) = ||x||p + ||y||p, and apply

Theorem 2.1. ¤
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Theorem 2.4. Let f : AB → AD be a continuous mapping with f(0) = 0

such that

‖df(
sax + tay

d
)− saf(x)− taf(y)‖ ≤ ϕ(x, y)

for all a ∈ A+
1 ∪ {i} and all x, y ∈ AB. If the sequence ( t

s )2nf(( s
t )

2nx)

converges uniformly on AB, then there exists a unique continuous A-linear

mapping T : AB → AD satisfying (iii).

Proof. Let a = 1 ∈ A+
1 . By Theorem 2.1, there exists a unique R-linear

mapping T : AB → AD satisfying (iii). By the continuity and the uniform

convergence, the R-linear mapping T : AB → AD is continuous.

By the assumption, for each a ∈ A+
1 ∪ {i},

‖df(
(s + t)a

d
(
s

t
)2nx)− (s + t)af((

s

t
)2nx)‖ ≤ ϕ((

s

t
)2nx, (

s

t
)2nx)

for all x ∈ AB. Using the fact that for each b ∈ A and each z ∈ AD
‖bz‖ ≤ K|b| · ‖z‖ for some K > 0, one can show that

‖daf(
s + t

d
(
s

t
)2nx)− (s + t)af((

s

t
)2nx)‖

≤ K|a| · ‖df(
s + t

d
(
s

t
)2nx)− (s + t)f((

s

t
)2nx)‖

≤ Kϕ((
s

t
)2nx, (

s

t
)2nx)

for all a ∈ A+
1 ∪ {i} and all x ∈ AB. So

‖df(
(s + t)a

d
(
s

t
)2nx)−daf(

s + t

d
(
s

t
)2nx)‖

≤ ‖df(
(s + t)a

d
(
s

t
)2nx)− (s + t)af((

s

t
)2nx)‖

+ ‖daf(
s + t

d
(
s

t
)2nx)− (s + t)af((

s

t
)2nx)‖

≤ ϕ((
s

t
)2nx, (

s

t
)2nx) + Kϕ((

s

t
)2nx, (

s

t
)2nx)

for all a ∈ A+
1 ∪ {i} and all x ∈ AB. Thus

(
t

s
)2n‖df(

(s + t)a
d

(
s

t
)2nx)− daf(

s + t

d
(
s

t
)2nx)‖ → 0
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as n →∞ for all a ∈ A+
1 ∪ {i} and all x ∈ AB. Hence

dT (
s + t

d
ax) = lim

n→∞
(
t

s
)2ndf(

(s + t)a
d

(
s

t
)2nx) = lim

n→∞
daf(

s + t

d
(
s

t
)2nx)

= daT (
s + t

d
x)

for all a ∈ A+
1 ∪ {i} and all x ∈ AB. So

T (ax) =
d

s + t
T (

s + t

d
ax) =

d

s + t
aT (

s + t

d
x) = aT (x)

for all a ∈ A+
1 ∪ {i} and all x ∈ AB.

For any element a ∈ A, a = a+a∗
2 + ia−a∗

2i , and a+a∗
2 and a−a∗

2i are self-

adjoint elements, furthermore, a = (a+a∗
2 )+−(a+a∗

2 )−+i(a−a∗
2i )+−i(a−a∗

2i )−,

where (a+a∗
2 )+, (a+a∗

2 )−, (a−a∗
2i )+, and (a−a∗

2i )− are positive elements (see

[8, Lemma 38.8]). So

T (ax) =T ((
a + a∗

2
)+x− (

a + a∗

2
)−x + i(

a− a∗

2i
)+x− i(

a− a∗

2i
)−x)

=(
a + a∗

2
)+T (x) + (

a + a∗

2
)−T (−x)

+ (
a− a∗

2i
)+T (ix) + (

a− a∗

2i
)−T (−ix)

=(
a + a∗

2
)+T (x)− (

a + a∗

2
)−T (x)

+ i(
a− a∗

2i
)+T (x)− i(

a− a∗

2i
)−T (x)

=((
a + a∗

2
)+ − (

a + a∗

2
)− + i(

a− a∗

2i
)+ − i(

a− a∗

2i
)−)T (x)

=aT (x)

for all a ∈ A and all x ∈ AB. Hence

T (ax + by) = T (ax) + T (by) = aT (x) + bT (y)

for all a, b ∈ A and all x, y ∈ AB, as desired. ¤

Theorem 2.5. Let A be a unital C∗-algebra of stable rank 1. Let f :

AB → AD be a continuous mapping with f(0) = 0 such that

‖df(
sax + tay

d
)− saf(x)− taf(y)‖ ≤ ϕ(x, y)
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for all a ∈ (A+
1 ∩Ain)∪{i} and all x, y ∈ AB. If the sequence ( t

s )2nf(( s
t )

2nx)

converges uniformly on AB, then there exists a unique continuous A-linear

mapping T : AB → AD satisfying (iii).

Proof. By the same reasoning as the proof of Theorem 2.4, there exists

a unique continuous R-linear mapping T : AB → AD satisfying (iii), and

(1) T (ax) = aT (x)

for all a ∈ (A+
1 ∩Ain) ∪ {i} and all x ∈ AB.

Let b ∈ A+
1 \Ain. Since Ain is dense in A, there exists a sequence {bm} in

Ain such that bm → b as m →∞. Put cm = 1
|bm|bm. Then cm → 1

|b|b = b as

m →∞. Put am =
√

c∗mcm. Then am → b as m →∞ and am ∈ A+
1 ∩Ain.

Thus there exists a sequence {am} in A+
1 ∩Ain such that am → b as m →∞,

and by the continuity of T

(2) lim
m→∞

T (amx) = T ( lim
m→∞

amx) = T (bx)

for all x ∈ AB. By (1),

(3) ‖T (amx)− bT (x)‖ = ‖amT (x)− bT (x)‖ → ‖bT (x)− bT (x)‖ = 0

as m →∞. By (2) and (3),

‖T (bx)− bT (x)‖ ≤‖T (bx)− T (amx)‖+ ‖T (amx)− bT (x)‖(4)

→0 as m →∞
for all x ∈ AB. By (1) and (4), T (ax) = aT (x) for all a ∈ A+

1 ∪ {i} and all

x ∈ AB.

The rest of the proof is similar to the proof of Theorem 2.4. ¤

Theorem 2.6. Let f : AB → AD be a mapping with f(0) = 0 such that

‖df(
sax + tay

d
)− saf(x)− taf(y)‖ ≤ ϕ(x, y)

for all a ∈ A+
1 ∪{i} and all x, y ∈ AB. If f(λx) is continuous in λ ∈ R for each

fixed x ∈ AB, then there exists a unique A-linear mapping T : AB → AD
satisfying (iii).

Proof. Let a = 1 ∈ A+
1 . By Theorem 2.1, there exists a unique R-linear

mapping T : AB → AD satisfying (iii).

The rest of the proof is similar to the proof of Theorem 2.4. ¤
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Theorem 2.7. Let A be a unital C∗-algebra of stable rank 1. Let f :

AB → AD be a mapping with f(0) = 0 such that

‖df(
sax + tay

d
)− saf(x)− taf(y)‖ ≤ ϕ(x, y)

for all a ∈ (A+
1 ∩ Ain) ∪ {i} and all x, y ∈ AB. Assume that f(ax) is

continuous in a ∈ A1 ∪ R for each fixed x ∈ AB, and that the sequence

( t
s )2nf(( s

t )
2nax) converges uniformly on A1 for each fixed x ∈ AB. Then

there exists a unique A-linear mapping T : AB → AD satisfying (iii).

Proof. By the same reasoning as the proof of Theorem 2.4, there exists

a unique R-linear mapping T : AB → AD satisfying (iii), and

T (ax) = aT (x)

for all a ∈ (A+
1 ∩ Ain) ∪ {i} and all x ∈ AB. By the continuity and the

uniform convergence, one can show that T (ax) is continuous in a ∈ A1 for

each x ∈ AB.

The rest of the proof is similar to the proof of Theorem 2.5. ¤

3. Stability of generalized Jensen’s equations in a Hilbert module

over a C∗-algebra

In this section, let h : AH → AH be a mapping with h(0) = 0 such that

h(( s
t )

2nx) = ( s
t )

2nh(x) for all positive integers n and all x ∈ AH.

We are going to prove the Hyers-Ulam stability of generalized Jensen’s

equations in a Hilbert module over a unital C∗-algebra.

Theorem 3.1. Let h : AH → AH be a continuous mapping such that

‖dh(
sax + tay

d
)− sah(x)− tah(y)‖ ≤ ϕ(x, y)

for all a ∈ A+
1 ∪ {i} and all x, y ∈ AH. Then the mapping h : AH → AH is

a bounded A-linear operator. Furthermore,

(1) if the mapping h : AH → AH satisfies the inequality

‖h(x)− h∗(x)‖ ≤ ϕ(x, x)
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for all x ∈ AH, then the mapping h : AH → AH is a self-adjoint

operator,

(2) if the mapping h : AH → AH satisfies the inequality

‖h ◦ h∗(x)− h∗ ◦ h(x)‖ ≤ ϕ(x, x)

for all x ∈ AH, then the mapping h : AH → AH is a normal

operator,

(3) if the mapping h : AH → AH satisfies the inequalities

‖h ◦ h∗(x)− x‖ ≤ ϕ(x, x),

‖h∗ ◦ h(x)− x‖ ≤ ϕ(x, x)

for all x ∈ AH, then the mapping h : AH → AH is a unitary

operator, and

(4) if the mapping h : AH → AH satisfies the inequalities

‖h ◦ h(x)− h(x)‖ ≤ ϕ(x, x),

‖h∗(x)− h(x)‖ ≤ ϕ(x, x)

for all x ∈ AH, then the mapping h : AH → AH is a projection.

Proof. The sequence ( t
s )2nh(( s

t )
2nx) converges uniformly on AH. By

Theorem 2.4, there exists a unique continuous A-linear operator T : AH →
AH satisfying (iii). By the assumption,

T (x) = lim
n→∞

(
t

s
)2nh((

s

t
)2nx) = lim

n→∞
(
t

s
)2n(

s

t
)2nh(x) = h(x)

for all x ∈ AH, where the mapping T : AH → AH is given in the proof

of Theorem 2.1. Hence the A-linear operator T is the mapping h. So the

mapping h : AH → AH is a continuous A-linear operator. Thus the A-linear

operator h : AH → AH is bounded (see [9, Proposition II.1.1]).

(1) By the assumption,

‖h((
s

t
)2nx)− h∗((

s

t
)2nx)‖ ≤ ϕ((

s

t
)2nx, (

s

t
)2nx)
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for all positive integers n and all x ∈ AH. Thus

(
t

s
)2n‖h((

s

t
)2nx)− h∗((

s

t
)2nx)‖ → 0

as n →∞ for all x ∈ AH. Hence

h(x) = lim
n→∞

(
t

s
)2nh((

s

t
)2nx) = lim

n→∞
(
t

s
)2nh∗((

s

t
)2nx) = h∗(x)

for all x ∈ AH. So the mapping h is a self-adjoint operator.

The proofs of the others are similar to the proof of (1). ¤

Theorem 3.2. Let A be a unital C∗-algebra of stable rank 1. Let h :

AH → AH be a continuous mapping such that

‖dh(
sax + tay

d
)− sah(x)− tah(y)‖ ≤ ϕ(x, y)

for all a ∈ (A+
1 ∩Ain)∪{i} and all x, y ∈ AH. Then the mapping h : AH →

AH is a bounded A-linear operator. Furthermore, the properties, given in

the statement of Theorem 3.1, hold.

Proof. The sequence ( t
s )2nh(( s

t )
2nx) converges uniformly on AH. By the

same reasoning as the proof of Theorem 2.5, there exists a unique continuous

R-linear operator T : AH → AH satisfying (iii), and

T (ax) = aT (x)

for all a ∈ (A+
1 ∩ Ain) ∪ {i} and all x ∈ AH. By the same method as the

proof of Theorem 2.5, one can show that

T (ax) = aT (x)

for all a ∈ A+
1 ∪ {i} and all x ∈ AH. By the same reasoning as the proof of

Theorem 2.4, the mapping T : AH → AH is A-linear.

The rest of the proof is the same as the proof of Theorem 3.1. So the

mapping h : AH → AH is a bounded A-linear operator, and the properties,

given in the statement of Theorem 3.1, hold. ¤
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4. Stability of generalized Jensen’s equations in Banach modules

over a C∗-algebra and unitary elements

In this section, we are going to prove the Hyers-Ulam stability of gener-

alized Jensen’s equations in Banach modules over a unital C∗-algebra asso-

ciated with unitary elements.

Theorem 4.1. Let f : AB → AD be a continuous mapping with f(0) = 0

such that

‖df(ax +
t

d
y)− daf(x)− tf(y)‖ ≤ ϕ(x, y)

for all a ∈ A+
s
d
∪ {i} and all x, y ∈ AB. If the sequence ( t

s )2nf(( s
t )

2nx)

converges uniformly on AB, then there exists a unique continuous A-linear

mapping T : AB → AD satisfying (iii).

Proof. Let a = s
d ∈ A+

s
d
. By Theorem 2.1, there exists a unique R-linear

mapping T : AB → AD satisfying (iii). By the continuity and the uniform

convergence, the R-linear mapping T : AB → AD is continuous.

Since a = s
d ∈ A+

s
d
,

‖df(
s

d
x +

t

d
y)− sf(x)− tf(y)‖ ≤ ϕ(x, y)

for all x, y ∈ AB. For each a ∈ A+
s
d
∪ {i},

‖df(
s

d

d

s
ax +

t

d
x)− sf(

d

s
ax)− tf(x)‖ ≤ ϕ(

d

s
ax, x)

for all x ∈ AB. So

‖sf(
d

s
ax)− daf(x)‖ ≤‖df(ax +

t

d
x)− daf(x)− tf(x)‖

+ ‖df(
s

d

d

s
ax +

t

d
x)− sf(

d

s
ax)− tf(x)‖

≤ϕ(x, x) + ϕ(
d

s
ax, x)

for all a ∈ A+
s
d
∪{i} and all x ∈ AB. Thus ( t

s )2n‖sf(d
s ( s

t )
2nax)−daf(( s

t )
2nx)‖

→ 0 as n →∞ for all a ∈ A+
s
d
∪ {i} and all x ∈ AB. Hence

sT (
d

s
ax) = lim

n→∞
(
t

s
)2nsf(

d

s
(
s

t
)2nax) = lim

n→∞
(
t

s
)2ndaf((

s

t
)2nx) = daT (x)
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for all a ∈ A+
s
d
∪{i} and all x ∈ AB. But T (dx) = dT (x) since T is additive,

and so T ( 1
sx) = 1

sT (x). So T (ax) = aT (x) for all a ∈ A+
s
d
∪ {i} and all

x ∈ AB. Since T is R-linear and T (ax) = aT (x) for each a ∈ A+
s
d
∪ {i},

T (ax) = T (
d

s
|a| · sa

d|a|x) =
d

s
|a| · T (

sa

d|a|x) =
d

s
|a| · sa

d|a| · T (x) = aT (x)

for all positive elements a ∈ A \ {0} and all x ∈ AB.

The rest of the proof is the same as the proof of Theorem 2.4. ¤

Combining the trick of the proof of Theorem 2.5 and the trick of the proof

of Theorem 4.1 yields the following.

Theorem 4.2. Let A be a unital C∗-algebra of stable rank 1. Let f :

AB → AD be a continuous mapping with f(0) = 0 such that

‖df(ax +
t

d
y)− daf(x)− tf(y)‖ ≤ ϕ(x, y)

for all a ∈ (A+
s
d
∩Ain)∪{i} and all x, y ∈ AB. If the sequence ( t

s )2nf(( s
t )

2nx)

converges uniformly on AB, then there exists a unique continuous A-linear

mapping T : AB → AD satisfying (iii).

Similarly, one can obtain similar results to Theorem 2.6 and Theorem

2.7.

Theorem 4.3. Let f : AB → AD be a continuous mapping with f(0) = 0

such that

‖df(ax +
t

d
y)− daf(x)− tf(y)‖ ≤ ϕ(x, y)

for all a ∈ s
dU(A) and all x, y ∈ AB. If the sequence ( t

s )2nf(( s
t )

2nx) con-

verges uniformly on AB, then there exists a unique continuous A-linear map-

ping T : AB → AD satisfying (iii).

Proof. Let a = s
d ∈ s

dU(A). By Theorem 2.1, there exists a unique R-

linear mapping T : AB → AD satisfying (iii). By the continuity and the

uniform convergence, the R-linear mapping T : AB → AD is continuous.

Since a = s
d ∈ s

dU(A),

‖df(
s

d
x +

t

d
y)− sf(x)− tf(y)‖ ≤ ϕ(x, y)
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for all x, y ∈ AB. For each a ∈ s
dU(A),

‖df(
s

d

d

s
ax +

t

d
x)− sf(

d

s
ax)− tf(x)‖ ≤ ϕ(

d

s
ax, x)

for all x ∈ AB. So

‖sf(
d

s
ax)− daf(x)‖ ≤‖df(ax +

t

d
x)− daf(x)− tf(x)‖

+ ‖df(
s

d

d

s
ax +

t

d
x)− sf(

d

s
ax)− tf(x)‖

≤ϕ(x, x) + ϕ(
d

s
ax, x)

for all a ∈ s
dU(A) and all x ∈ AB. Thus ( t

s )2n‖sf(d
s ( s

t )
2nax)−daf(( s

t )
2nx)‖

→ 0 as n →∞ for all a ∈ s
dU(A) and all x ∈ AB. Hence

sT (
d

s
ax) = lim

n→∞
(
t

s
)2nsf(

d

s
(
s

t
)2nax) = lim

n→∞
(
t

s
)2ndaf((

s

t
)2nx) = daT (x)

for all a ∈ s
dU(A) and all x ∈ AB. But T (d

sx) = d
sT (x) since T is additive.

So

T (ax) = aT (x)

for all a ∈ s
dU(A) and all x ∈ AB.

By Lemma B, for each element a ∈ A s
d
, there are unitary elements

v1, v2, · · · , vm ∈ A such that m d
2sa = v1 + v2 + · · · + vm for some posi-

tive integer m. Hence

T (
m

2
ax) = T (

s

d
v1x +

s

d
v2x + · · ·+ s

d
vmx)

= (
s

d
v1 +

s

d
v2 + · · ·+ s

d
vm)T (x) =

m

2
aT (x)

for all a ∈ A s
d

and all x ∈ AB. But T (m
2 ax) = m

2 T (ax). So T (ax) = aT (x)

for all a ∈ A s
d

and all x ∈ AB. Hence

T (ax) = T (
d

s
|a| · sa

d|a|x) =
d

s
|a| · T (

sa

d|a|x) =
d

s
|a| · sa

d|a| · T (x) = aT (x)

for all a ∈ A\{0} and all x ∈ AB. Thus the R-linear mapping T : AB → AD
is a continuous A-linear mapping satisfying (iii), as desired. ¤
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Theorem 4.4. Let f : AB → AD be a mapping with f(0) = 0 such that

‖df(ax +
t

d
y)− daf(x)− tf(y)‖ ≤ ϕ(x, y)

for all a ∈ s
dU(A) and all x, y ∈ AB. If f(λx) is continuous in λ ∈ R for each

fixed x ∈ AB, then there exists a unique A-linear mapping T : AB → AD
satisfying (iii).

Proof. Let a = s
d ∈ s

dU(A). By Theorem 2.1, there exists a unique R-

linear mapping T : AB → AB satisfying (iii). By the same reasoning as the

proof of Theorem 4.3, the R-linear mapping T : AB → AB is an A-linear

mapping, as desired. ¤

5. Stability of generalized Jensen’s equations in a Hilbert module

over a C∗-algebra and unitary elements

In this section, let h : AH → AH be a mapping with h(0) = 0 such that

h(( s
t )

2nx) = ( s
t )

2nh(x) for all positive integers n and all x ∈ AH.

We are going to prove the Hyers-Ulam stability of generalized Jensen’s

equations in a Hilbert module over a unital C∗-algebra associated with uni-

tary elements.

Combining the trick of the proof of Theorem 3.1 and the trick of the proof

of Theorem 4.1 yields the following.

Theorem 5.1. Let h : AH → AH be a continuous mapping such that

‖dh(ax +
t

d
y)− dah(x)− th(y)‖ ≤ ϕ(x, y)

for all a ∈ A+
s
d
∪ {i} and all x, y ∈ AH. Then the mapping h : AH → AH

is a bounded A-linear operator. Furthermore, the properties, given in the

statement of Theorem 3.1, hold.

Combining the trick of the proof of Theorem 3.2 and the trick of the proof

of Theorem 4.2 yields the following.

Theorem 5.2. Let A be a unital C∗-algebra of stable rank 1. Let h :

AH → AH be a continuous mapping such that

‖dh(ax +
t

d
y)− dah(x)− th(y)‖ ≤ ϕ(x, y)
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for all a ∈ (A+
s
d
∩Ain)∪{i} and all x, y ∈ AH. Then the mapping h : AH →

AH is a bounded A-linear operator. Furthermore, the properties, given in

the statement of Theorem 3.1, hold.

Combining the trick of the proof of Theorem 4.3 and the trick of the proof

of Theorem 3.1 yields the following.

Theorem 5.3. Let h : AH → AH be a continuous mapping such that

‖dh(ax +
t

d
y)− dah(x)− th(y)‖ ≤ ϕ(x, y)

for all a ∈ s
dU(A) and all x, y ∈ AH. Then the mapping h : AH → AH

is a bounded A-linear operator. Furthermore, the properties, given in the

statement of Theorem 3.1, hold.

So the mapping h : AH → AH is an element of the C∗-algebra L(AH) of

all bounded A-linear operators on AH.
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