• Title/Summary/Keyword: ssbauer spectroscopy

Search Result 134, Processing Time 0.022 seconds

Studies of Crystallographic and Magnetic Properties in Fe0.9Zn0.1Cr2S4 (Fe0.9Zn0.1Cr2S4의 결정학적 및 자기적 성질에 관한 연구)

  • Bae, Sung-Hwan;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.34-37
    • /
    • 2007
  • The crystallographic and magnetic properties of $Fe_{0.9}Zn_{0.1}Cr_2S_4$ have been studied by X-ray diffractometer(XRD), vibrating sample magnetometer(VSM) and $M\"{o}ssbauer$ spectroscopy measurement. The crystal structure was determined by the normal cubic spinel of space group Fd3m and the lattice constant was $a_0=9.9967\;{\AA}$. The specific phenomenon which looks like cusp pattern at 77 K was observed in magnetization corves(ZFC : Zero Field Cooling) under 100 Oe applied field. $N\acute{e}el$ temperature($T_N$) was determined to be 153 K by VSM and $M\"{o}ssbauer$ spectra. The asymmetric 8-line profile has been observed at 4.2 K, which was attributed by the colossal electric quadupole interaction(${\Delta}E_Q$), ${\Delta}E_Q$ has 2.22 mm/s at 4.2 K. The ${\Delta}E_Q$ abruptly decreases around 77 K and then it disappears above 77 K with diminishing of 8-line pattern. The isomer shift $\delta$ at room temperature is 0.48 mm/s relative to Fe metal, which means that the charge state of Fe ions is ferrous in character.

Crystallographic, Magnetic and Mössbauer Study of Phase Transition in LaVO3

  • Yoon, Sung-Hyun
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.108-112
    • /
    • 2007
  • Nature of phase transition in $LaVO_3$ has been studied using X-ray diffraction, SQUID magnetometer, and $M\"{o}ssbauer$ spectroscopy with 1% of $^{57}Fe$ doped sample. The crystal structure was orthorhombic with space group Pnma. Antiferromagnetic phase transition temperature $T_N$ was 140K, below which a weak ferromagnetic trace has been found. $M\"{o}ssbauer$ spectra below $T_N$ were single set of hyperfine sextet, which enabled us to discard the possibility of two inequivalent magnetic sites or uncompensated antiferromagnetism. Hyperfine magnetic field abruptly disappeared as low as about 90K, much below $T_N$.

Effects of Mn Substitution on Crystallographic and Magnetic Properties of Li-Zn-Cu Ferrites

  • Lee, Young Bae;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2014
  • The effects of manganese substitution on the crystallographic and magnetic properties of Li-Zn-Cu ferrite, $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$ ($0.0{\leq}x{\leq}0.8$), were investigated. Ferrites were synthesized via a conventional ceramic method. We confirmed the formation of crystallized particles using X-ray diffraction, field emission scanning electron microscopy and $M{\ddot{o}}ssbauer$ spectroscopy. All of the samples showed a single phase with a spinel structure, and the lattice constants linearly decreased as the substituted manganese content increased, and the particle size of the samples also somewhat decreased as the doped manganese content increased. All the $M{\ddot{o}}ssbauer$ spectra can be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites, and one doublet. The cation distribution was determined from the variation of the $M{\ddot{o}}ssbauer$ parameters and of the absorption area ratio. The magnetic behavior of the samples showed that an increase in manganese content led to a decrease in the saturation magnetization, whereas the coercivity was nearly constant throughout. The maximum saturation magnetization was 73.35 emu/g at x = 0.0 in $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$.

Evidence of Spin Reorientation by Mössbauer Analysis

  • Myoung, Bo Ra;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.126-129
    • /
    • 2014
  • We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a M$\ddot{o}$ssbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by M$\ddot{o}$ssbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The M$\ddot{o}$ssbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, $E_Q$ has anomalous two-points of temperature dependence of $E_Q$ curve as freezing temperature, $T_f=11K$, and N$\acute{e}$el temperature, $T_N=26K$. This suggests that there appears to be a slowly-fluctuating "spin gel" state between $T_f$ and $T_N$, caused by non-paramagnetic spin state below $T_N$. This comes from charge re-distribution due to spin-orientation above $T_f$, and $T_N$, due to the changing $E_Q$ at various temperatures. Isomer shift value ($0.7mm/s{\leq}{\delta}{\leq}0.9mm/s$) shows that the charge states are ferrous ($Fe^{2+}$), for all temperature range. The Debye temperature for the octahedral site was found to be ${\Theta}_D=260K$.

Magnetic Properties of R-YIG (R = La, Nd, and Gd) Derived by a Sol-gel Method

  • Uhm, Young Rang;Lim, Jae Cheong;Choi, Sang Mu;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.303-307
    • /
    • 2016
  • $Y_{3-x}R_xFe_5O_{12}$ (R = La, Nd, and Gd) powder were fabricated using a sol-gel pyrolysis method. Their magnetic properties and crystalline structures were investigated using x-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and $M{\ddot{o}}ssbauer$ Spectrometer. The $M{\ddot{o}}ssbauer$ spectra for the powders were taken at various temperatures ranging from 12 K to Curie temperature (Tc). The isomer shifts indicated that the valence states of Fe ions for the 16(a) and 24(d) sites have a ferric character. The saturation magnetization (Ms) increases from 32 to 34 (emu/g) for the YIG, and Nd-YIG, respectively. However, Ms decreases to 27 (emu/g) at Gd-YIG.

Mossbauer Study of EuxFe2-xO3 (x0.8 and 0.7)

  • Kim, J. G.;Kim, E. C.
    • Journal of Magnetics
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 1997
  • The microscopic physical properties of nonstoichiometric garnet EuxFe2-xO3 (x=0.8 and 0.7) have been studied by the methods of X-ray diffraction at room temperature and M ssbauer spectroscopy within the temeperature range of 12-560 K. The X-ray diffraction patterns of the samples show coexistence of dominant garnet and a small portion of unknown crystal phase. But the M ssbauer spectra for the sample of EF08 and EF07 near N el temperature determined to be equally 549$\pm$5K show that there are no any other extra crystal phases within the experimental error. The results of which the temperature dependence of M ssbauer parameters was anlyzed by the spin-wave theory and Debye model are in good agreement with the fact that the sample of EF08 has some vacancies at a-and/or d-sites.

  • PDF

The Jahn-Teller Effect in the Iron Copper Spinel $CuFe_{2}O_{4}$ (철, 구리 스피넬 $CuFe_{2}O_{4}$의 Jahn-Teller 효과에 관한 연구)

  • 서정철;이민용
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.2
    • /
    • pp.123-127
    • /
    • 1995
  • $CuFe_{2}O_{4}$ was accomplished by chemical rrethod and the crystallographic and magnetic properties have been studied by $M\"{o}ssbauer$ spectroscopy and X-ray diffraction. The slowly cooled sample is found to have a tetragonal spinel structure with the lattice constant $a=8.26{\pm}0.05{\AA},\;c=8.75{{\pm}}0.05{\AA}$. The $M\"{o}ssbauer$ spectra between the room temperature to the Curie temperature show that the $Cu_{2+}$ ions at octahedral site have the Jahn-Teller effect and the sample exhibits a structural phase transition near 630K due to the Jahn-Teller effect. The Curie temperature is found to be 690K and it is lower than that of ceramic method.

  • PDF

Magnetic Properties of Cu-Zn Ferrites (Cu-Zn 훼라이트의 자기적 성질)

  • 이충섭;이찬영;김철성;지상희
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 1993
  • The cationic distributions and magnetic properties of $Cu_{x}Zn_{1-x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ have been studied by X-ray diffraction and $M\"{o}ssbauer$ spectroscopy. The crystal structures are cubic spinels in the range $0{\leq}x{\leq}0.9$. The ionic distribution of ${(Zn_{1-x}Fe_{x})}_{A}{[Zn_{x}Fe_{2-x}]}_{B}O_{4}$, where x=0.1. The distribution of $Fe^{3+}$ ions was extracted from the $M\"{o}ssbauer$ spectra below Curie temperature in the whole range $0{\leq}x{\leq}1$. The number of $Fe^{3+}$ ions in the tetrahedral sites and Curie temperature of Cu-Zn ferrite increase with increasing Cu-concentration.

  • PDF

Effects of Ga Substitution in LaFe1-xGaxO3 (χ= 0, 0.1, 0.3, 0.5, and 0.7)

  • Yoon, Sung-Hyun;Park, Seung-Jin;Cha, Deok-Joon;Min, Byung-Ki;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.40-44
    • /
    • 2002
  • Crystallographic and magnetic properties of ;$LaFe_{1-x}Ga_xO_3$($\chi$= 0, 0.1, 0.3, 0.5, and 0.7) were studied using XRD and Mossbauer spectroscopy. The crystal structures were found to be orthorhombic and the lattice parameters $\alpha$, b, and c were found to decrease with increasing Ga substitution. M$\ddot{o}$ssbauer spectra were obtained at various absorber temperatures ranging from 20 K to 750 K. The M$\ddot{o}$ssbauer spectra were all sextets below $T_N$ and were all singlets above $T_N$. Asymmetric broadening of the M$\ddot{o}$ssbauer spectral lines at 20 K was explained by the multitude of possible environments for an iron nucleus. As the temperature increases to $T_N$, a systematic line broadening in M$\ddot{o}$ssbauer spectra was observed and interpreted to originate from different temperature dependencies of the magnetic hyperfine fields at various iron sites.

Study of Magnetic Property of Fe-N Nanoparticle Using Mössbauer Spectroscopy (뫼스바우어 분광기법을 이용한 Fe-N 나노입자의 자기특성연구)

  • Oh, Sei-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2007
  • Three nano-sized Fe-N particle samples synthesized by Chemical Vapor Condensation (CVC) were analyzed using $M\"{o}ssbauer$ spectroscopy, XRD and BET. The synthesized nanoparticles consisted of ${\epsilon}-Fe_{2.12}N,\;{\gamma}'-Fe_4N,\;{\alpha}-Fe\;and\;{\gamma}-Fe.\;{\gamma}'-Fe_4N$ was mainly formed at the low decomposition temperature. With increasing decomposition temperature, the phase was changed to ${\gamma}-Fe$ via ${\epsilon}-Fe_{2.12}N$. For synthesizing Fe-N phases, this study implies that the low decomposition temperature is better than high temperature during Chemical Vapor Condensation.