Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.3.210

Effects of Mn Substitution on Crystallographic and Magnetic Properties of Li-Zn-Cu Ferrites  

Lee, Young Bae (Nanotechnology Research Center, Konkuk University)
Choi, Won-Ok (Department of Nano Science and Mechanical Engineering, Konkuk University)
Chae, Kwang Pyo (Department of Nano Science and Mechanical Engineering, Konkuk University)
Publication Information
Abstract
The effects of manganese substitution on the crystallographic and magnetic properties of Li-Zn-Cu ferrite, $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$ ($0.0{\leq}x{\leq}0.8$), were investigated. Ferrites were synthesized via a conventional ceramic method. We confirmed the formation of crystallized particles using X-ray diffraction, field emission scanning electron microscopy and $M{\ddot{o}}ssbauer$ spectroscopy. All of the samples showed a single phase with a spinel structure, and the lattice constants linearly decreased as the substituted manganese content increased, and the particle size of the samples also somewhat decreased as the doped manganese content increased. All the $M{\ddot{o}}ssbauer$ spectra can be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites, and one doublet. The cation distribution was determined from the variation of the $M{\ddot{o}}ssbauer$ parameters and of the absorption area ratio. The magnetic behavior of the samples showed that an increase in manganese content led to a decrease in the saturation magnetization, whereas the coercivity was nearly constant throughout. The maximum saturation magnetization was 73.35 emu/g at x = 0.0 in $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$.
Keywords
Li-Zn-Cu ferrite; $M{\ddot{o}}ssbauer$ spectroscopy; cation distribution; saturation magnetization; coercivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. A. Jadhav, J. Magn. Magn. Mater. 224, 167 (2001).   DOI   ScienceOn
2 T. Nakamura, T. Miyamoto, and Y. Yamada, J. Magn. Magn. Mater. 256, 340 (2003).   DOI   ScienceOn
3 T. Nakamura, M. Naoe, and Y. Yamada, J. Magn. Magn. Mater. 305, 120 (2006).   DOI   ScienceOn
4 J. K. Kang, W. H. Kwon, J. G. Lee, K. P. Chae, and Y. B. Lee, J. Korean Phys. Soc. 59, 85 (2011).   DOI
5 C. G. Whinfrey, D. W. Eckort, and A. Tauber, J. Am. Chem. Soc. 82, 2695 (1960).   DOI
6 K. P. Chae, W. H. Kwon, and J. G. Lee, J. Magn. Magn. Mater. 324, 2701 (2012).   DOI   ScienceOn
7 W. H. Kwon, J. G. Lee, S. W. Lee, and K. P. Chae, J. Korean Phys. Soc. 56, 1838 (2010).   DOI   ScienceOn
8 S. A. Mazen and N. I. Abu-Elsaad, J. Magn. Magn. Mater. 324, 3366 (2012).   DOI   ScienceOn
9 M. Maisnam, S. Phanjoubam, H. N. K. Sarma, C. Prakash, L. R. Devi, and O. P. Thakur, Materials Lett. 58, 2412 (2004).   DOI   ScienceOn
10 L. Neel, Ann. Phys. 3, 137 (1948).
11 C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1959).   DOI
12 X. Cao, K. Sun, C. Sun, and L. Leng, J. Magn. Magn. Mater 321, 2896 (2009).   DOI   ScienceOn
13 B. D. Cullity, Elements of X-Ray Diffraction, Addition-Wesley Co. Readings, MA (1978) p. 102.
14 S. A. Jadhav, Mater. Chem. Phys. 65, 120 (2000).   DOI   ScienceOn