Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.3.303

Magnetic Properties of R-YIG (R = La, Nd, and Gd) Derived by a Sol-gel Method  

Uhm, Young Rang (Radioisotope Research Division, Korea Atomic Energy Research institute (KAERI))
Lim, Jae Cheong (Radioisotope Research Division, Korea Atomic Energy Research institute (KAERI))
Choi, Sang Mu (Radioisotope Research Division, Korea Atomic Energy Research institute (KAERI))
Kim, Chul Sung (Department of nano-electro physics, Kookmin University)
Publication Information
Abstract
$Y_{3-x}R_xFe_5O_{12}$ (R = La, Nd, and Gd) powder were fabricated using a sol-gel pyrolysis method. Their magnetic properties and crystalline structures were investigated using x-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and $M{\ddot{o}}ssbauer$ Spectrometer. The $M{\ddot{o}}ssbauer$ spectra for the powders were taken at various temperatures ranging from 12 K to Curie temperature (Tc). The isomer shifts indicated that the valence states of Fe ions for the 16(a) and 24(d) sites have a ferric character. The saturation magnetization (Ms) increases from 32 to 34 (emu/g) for the YIG, and Nd-YIG, respectively. However, Ms decreases to 27 (emu/g) at Gd-YIG.
Keywords
sol-gel method; $M{\ddot{o}}ssbauer$ spectroscopy; R-YIG (R = La, Nd, and Gd); garnet structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. Chen, Q. Li, X. Wang, Z. Feng, Y. Chen, and V. G. Harris, IEEE Trans. Magn. 51, 205804 (2015).
2 P. W. Peterman, M. Ye, and P. E. Wigen, J. Appl. Phys. 76, 6886 (1994).   DOI
3 S. Geller and M. A. Gilleo, J. Phys. Chem. Solids. 3, 30 (1957).   DOI
4 K. Matsumoto, K. Yamaguchi, and T. Fuji, IEEE Trans. J. Magn. in Japan 6, 614 (1991).   DOI
5 C. S. Kim, Y. R. Uhm, and J. G. Lee, J. Magn. Soc. Japan 23, 534 (1999).   DOI
6 C. H. Lin, H. Y. Chang, and I. N. Lin, IEEE Trans. Magn. 33, 3415 (1997).   DOI
7 Z. Cheong, H. Yang, L. Yu, Y. Cui, and S. Feng, J. Magn. Magn. Mater. 302, 259 (2006).   DOI
8 R. D. Sanchez and J. Rivas J. Magn. Magn. Mater. 247, 92 (2002).   DOI
9 Y. R. Uhm, S. J. Kim, and C. S. Kim, IEEE Trans. Magn. 37, 2428 (2001).   DOI
10 Y. B. Lee and K. P. Chae, J. Phys. Chem. Solids 62, 1335 (2001).   DOI
11 V. M. Sarnatskii, I. O. Mavlonazrov, and L. V. Lutsev, Tech. Phys. Lett. 40, 622 (2014).   DOI
12 F. W. Aldbea and N. B. Ibrahim, J. Mater. Sci. & Appli. 1, 185 (2015).
13 F. Soderlind, L. Selegard, P. Nordblad, K. Uvdul, and P. O. Kall, J. Sol-Gel Sci. Technol. 29, 253 (2009).
14 Z. Cheong, H. Yang, L. Yi, and X. Xu, J. Mater. Electron 19, 442 (2008).   DOI
15 A. A.Satter, H. M. Elsayed, and A. M. Faramawy, J. Magn. Magn. Mater. 412, 172 (2016).   DOI
16 Y. R. Uhm, H. M. Lee, G. J. Lee, and C. K. Rhee, J. Magn. 14, 75 (2009).   DOI
17 C. S. Kim, B. K. Min, S. Y. An, and Y. R. Uhm, J. Magn. Magn. Mater. 239, 54 (2002).   DOI
18 A. C. Morais, V. K. Garg, A. C. Oliveira, L. B. Silveira, J. G. Santos, M. M. A. Rodrigues, and A. C. Tedesco, Hyper. Interact. 190, 269 (2009).
19 S. Morup, M. F. Hansen, and C. Franden, Belistein J. Nanotechnol. 1, 182 (2010).   DOI