• Title/Summary/Keyword: squeal

Search Result 131, Processing Time 0.022 seconds

Application of dithering control for the railway wheel squealing noise mitigation

  • Marjani, Seyed Rahim;Younesian, Davood
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • A new methodology for mitigation of the wheel squealing is proposed and investigated based on the dithering control. The idea can be applied in railway lines particularly in urban areas. The idea is clearly presented, and applied to a validated model. A full-scale model including the vehicle, curved track and wheel/rail contact is developed in the time domain to analyze the possibility and level of wheel squeal noise. Comparing the numerical results with a field test, the model is validated in different levels namely i) occurrence, ii) squealing frequency and iii) noise level. Two different approaches are proposed a) dithering of the wheel with piezoelectric patches and b) dithering of the rail with piezoelectric stacks. The noise level as well as the wheel responses is compared after applying the control strategy. A parametric study is carried out and effect of the dithering voltage and frequency on the squealing noise is investigated. It is found that both the strategies perform quite effectively within the saturating threshold of piezoelectric actuators.

Low Frequency Squeal Noise Reduction using Mode Participation Factor in Complex Eigenvalue Analysis (복소고유치해석에서 모드기여도 인자를 이용한 저주파 스퀼소음 저감)

  • Park, Jeong Min;Kim, Hyun Soo;Yoon, Moon Young;Boo, Kwang Seok;Kim, Heung Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.325-331
    • /
    • 2013
  • In this study, a complex eigenvalue analysis is implemented to verify the unstable mode of a brake system using ABAQUS software. The component participation factors and component modal participation factors are used to analyze the total contributions from each component and each component mode to a particular unstable system mode. This study shows that the 1.4-kHz unstable system mode comes from mode coupling between the 2nd nodal diametric mode and 3rd lateral axial mode (LAM) in the baseline model. A sensitivity analysis with a linking index is performed to prevent the mode coupling of the component modes. This linking index analysis shows the optimum mass loading position to move away the natural frequency of the 3rd LAM, which contributes to the unstable mode. Finally, a complex eigenvalue analysis is implemented with mass loading in the tie bar position, and no unstable system mode is generated in the low-frequency range (below 2 kHz).

Analysis of the Effect of Contact Stiffness on the Out-of-plane Motion of a Disc Brake System using 2-DOE Model (2자유도 모텔을 이용한 디스크 브레이크의 면외 운동에 미치는 접촉강성의 영향 분석)

  • 신기홍;조용구;차병규;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • A two degree-of-freedom mathematical model is presented to investigate the friction mechanism of a disc brake system. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The model with the contact parameter is considered under the assumption that the out-of-plane motion depends on the friction force along the in-plane motion. In order to describe the relationship between the friction force and the out-of plane motion, the dynamic friction coefficient is considered as a function of both relative velocity and normal farce. Using this friction law, a contact stiffness matrix along the normal direction can be obtained. The out-of-plane motion is then investigated by both the stability analysis and the numerical analysis for various parametric conditions. The results show that the stiffness parameters of the pad and the disc must be controlled at the same time. Also, the numerical analysis shows the existence of limit cycle caused by the effect of intermittent contact stiffness.

A Study for High Speed Judder Evaluation on Brake System (제동 시스템에서 고속 저더 개선 평가에 관한 연구)

  • Kim, Seonghwan;Cho, Sungsun;Lee, Junghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.485-494
    • /
    • 2013
  • This paper deals with experimental evaluation methods for high speed judder on the brake-caliper system. Firstly, two types of brake caliper systems due to the wheel vibration was evaluated. Secondly, the high-speed judder of the brake was also investigated using the subjective rating evaluation in the high-speed road test. These experimental evaluations were carried out by changing the materials of brake pad and the specifications of the brake-corner module. Based upon the test results, a new specification of the brake pad, $15{\times}5$ vertical chamfer, was proposed. The new brake pad showed 3 points, 60 %, improvement in the subjective-rating evaluation comparing with conventional one. Besides, we need to decide properly with judder characteristic of pad material and have to carefully take into consideration other design parameters; caliper, disc, and the braking performance, durability, squeal noise.

Prediction of Rolling Noise of a Korean High-Speed Train Using FEM and BEM (유한요소법과 경계요소법을 이용한 한국형 고속전철의 전동소음 예측)

  • 양윤석;김관주
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.444-450
    • /
    • 2000
  • Wheel-rail noise is normally classified into three catagories : rolling impact and squeal noise. In this paper rolling noise caused by the irregularity between a wheel and a rail is analysed as follows: The irregularity between the wheel and the rail is assumed as linear superposition of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory and then contact force between the wheel and the rail is calculated. vibration of the rail and the wheel is calculated theoretically by receptance method or FEM depending on the geometry of the wheel or the rail for the frequency range of 100-500 Hz important for noise generation. The radiation noise caused by those vibration response is computed by BEM To verify this analysis tools rolling noise is calculated by proposed analysis steps using typical roughness data and these results are compared with experimental rolling noise data. This analysis tools show reasonable results and finally used for the prediction of the Korean high speed train rolling noise.

  • PDF

The Effect of Iron Oxides $(Fe_2O_3,\;Fe_3O_4)$ on Tribological Characteristics of Automotive Friction Materials (자동차용 마찰재에서 철산화물이 마찰특성에 미치는 영향에 관한 연구)

  • Cho KeunHyung;Jang Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.289-295
    • /
    • 2004
  • The relationship between friction characteristics and iron oxides at the sliding interface was investigated. Three friction materials containing iron, magnetite $(Fe_3O_4)$ or hematite $(Fe_2O_3)$ were manufactured and friction tests were performed on gray cast iron disks to evaluate the friction coefficient as a function of sliding speed $\mu-\nu$. In-situ noise spectrum analyzer was employed to compare noise propensity during friction tests. Results show that the specimens with magnetite are more sensitive to velocity than those with iron or hematite. The specimens containing magnetite and hematite generated noise with different peaks in the spectrum. The difference in the peak frequency seems attributed to the different surface aggressiveness of iron oxides and intermittent changes of real contact area at the sliding interface during sliding. Surface morphology and roughness of the counter disc after the tests are also consistent with the aggressiveness of iron oxides.

  • PDF

Moan Noise Analysis of Rear Disc Brake (후륜 디스크 브레이크 Moan 노이즈 해석)

  • 박진국;김찬중;이봉현;정호일;문창룡;김정락;이충렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.607-612
    • /
    • 2004
  • Disc brake noise continues to be a major concern throughout the automotive industry despite efforts to reduce its occurrence. Eliminating vibrations during braking is an important task for both vehicle passenger comfort and reducing the overall environmental noise levels. There are several classes of disc brake noise, the major ones being squeal, judder, groan, and moan. In this study, analytical model for moan noise of rear disk brake is investigated. Modeling of the disc brake assembly to take account of the effect of different geometrical and contact parameters is studied through the use of multi-body model. The contact stiffness of the caliper and torque member plays an important role in controlling brake vibration. Therefore, a suitable material pair at the caliper/body contact has been made. An ADAMS model of a rear disc brake system was integrated with a flexible suspension trailng arm from MSC/NASTRAN. A fully non-linear dynamic simulatin of brake system behavior, containing rigid and flexible bodies, was performed for a Prescribed set of operating conditions. Simulation results were validated using data from vehicle experimental testing.

  • PDF

The Analysis and Experimental Study on the Wheel Absorber for Reduction of Noise Emission during the Train Operation (철도차량의 운행 중 소음 저감을 위한 휠업소버의 해석 및 실험적 고찰)

  • Son, Young-Jin;Chung, Su-Young;Jang, Won-Rak;Choi, Sang-Chun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2163-2172
    • /
    • 2008
  • The noise to be considered as the most important in railway systems is the noise generated from the wheel/rail interaction. Such noise can be divided into three categories; that is, the rolling noise, the squeal noise and the wheel howling noise. Especially in metro systems, this type of noise has been considered seriously in recent years, and the diversified studies on the mechanism and solutions of such noise are in progress by many railways and researching bodies. In this study, a specially designed wheel absorber is installed in the wheel, and FEM analysis and laboratory tests are executed for the two cases, i.e. with wheel absorber and without wheel absorber, to check the effect of the wheel absorber in noise reduction. For the FEM analysis, the frequency response functions for respective cases are compared. And, for the laboratory test, following four cases are tested and compared; that is, i) with wheel only, ii) installation of ring damper only, iii) installation of damping material and cover, iv) installation of complete absorber system.

  • PDF

An analysis of plastic deformation occurring by interference fit of disk brake hub bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.238-241
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit (bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

  • PDF

A Dry Friction Model to Realize Stick for Simulation of the System with Friction and Accuracy Verification of the Friction Model (마찰력이 작용하는 동적 시스템의 점착 구현을 위한 마찰모델 제안 및 정확성 검증)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.748-755
    • /
    • 2012
  • Friction causes self-excited vibration, stick-slip vibration and any other friction-induced phenomena. That kinds of vibrations cause chatter and squeal. In order to predict such vibrations accurately, employing an accurate friction model is very important because a dynamic behavior of a system with friction is dominantly governed by a friction model. A Coulomb friction model is the most widely known model. Coulomb friction model is useful model to obtain analytical solutions of the system with friction and the model gives relatively good simulation result. However, defining a friction force at a stick state in simulation is hard because of the characteristic itself and a Coulomb friction model is discontinuous function between a static and a dynamic friction coefficient. Therefore, applying the Coulomb friction model to a simulation is not appropriate. In order to resolve these problems, an approximated Coulomb friction model was developed using simple and continuous function. However, an approximated Coulomb friction model cannot realize stick. Therefore, an approximated Coulomb friction model cannot describe friction phenomena accurately. In order to analyze a friction phenomenon accurately, a friction model for a simulation was proposed in this paper. A proposed friction model realizes stick and gives reasonably good results compared to results obtained by the simulation employing an approximated Coulomb friction model. Accuracy of a proposed friction model was verified by comparing experimental results.