• Title/Summary/Keyword: squared error loss function

Search Result 49, Processing Time 0.024 seconds

Bayesian Estimators Using Record Statistics of Exponentiated Inverse Weibull Distribution

  • Kim, Yong-Ku;Seo, Jung-In;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.479-493
    • /
    • 2012
  • The inverse Weibull distribution(IWD) is a complementary Weibull distribution and plays an important role in many application areas. In this paper, we develop a Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution(EIWD). We obtained Bayesian estimators through the squared error loss function (quadratic loss) and LINEX loss function. This is done with respect to the conjugate priors for shape and scale parameters. The results may be of interest especially when only record values are stored.

Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values

  • Seo, Jung In;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.611-622
    • /
    • 2014
  • The inverse Weibull distribution (IWD) is the complementary Weibull distribution and plays an important role in many application areas. In Bayesian analysis, Soland's method can be considered to avoid computational complexities. One limitation of this approach is that parameters of interest are restricted to a finite number of values. This paper introduce nonparametric Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland's conjugate piror, stick-breaking prior is considered and the corresponding Bayesian estimators under the squared error loss function (quadratic loss) and LINEX loss function are obtained and compared with other estimators. The results may be of interest especially when only record values are stored.

Bayesian Estimation for Reliability in a System Consisting of the Left Truncated Exponential Components

  • Park, Man-Gon;Jung, Yun-Sung
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.1
    • /
    • pp.19-34
    • /
    • 1989
  • In this paper, we propose the Bayes estimators of the reliability for a system consisting of the left-truncated exponential components under the truncated normal distribution as a conjugate prior distribution and squared - error loss function on the series, parallel and k-out-of-m : G system. And we compare the proposed Bayes estimators of the system reliability each other in terms of MSE performances and stabilities by the Monte Carlo simulation.

  • PDF

A new extension of Lindley distribution: modified validation test, characterizations and different methods of estimation

  • Ibrahim, Mohamed;Yadav, Abhimanyu Singh;Yousof, Haitham M.;Goual, Hafida;Hamedani, G.G.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.473-495
    • /
    • 2019
  • In this paper, a new extension of Lindley distribution has been introduced. Certain characterizations based on truncated moments, hazard and reverse hazard function, conditional expectation of the proposed distribution are presented. Besides, these characterizations, other statistical/mathematical properties of the proposed model are also discussed. The estimation of the parameters is performed through different classical methods of estimation. Bayes estimation is computed under gamma informative prior under the squared error loss function. The performances of all estimation methods are studied via Monte Carlo simulations in mean square error sense. The potential of the proposed model is analyzed through two data sets. A modified goodness-of-fit test using the Nikulin-Rao-Robson statistic test is investigated via two examples and is observed that the new extension might be used as an alternative lifetime model.

SOME POINT ESTIMATES FOR THE SHAPE PARAMETERS OF EXPONENTIATED-WEIBULL FAMILY

  • Singh Umesh;Gupta Pramod K.;Upadhyay S.K.
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.63-77
    • /
    • 2006
  • Maximum product of spacings estimator is proposed in this paper as a competent alternative of maximum likelihood estimator for the parameters of exponentiated-Weibull distribution, which does work even when the maximum likelihood estimator does not exist. In addition, a Bayes type estimator known as generalized maximum likelihood estimator is also obtained for both of the shape parameters of the aforesaid distribution. Though, the closed form solutions for these proposed estimators do not exist yet these can be obtained by simple appropriate numerical techniques. The relative performances of estimators are compared on the basis of their relative risk efficiencies obtained under symmetric and asymmetric losses. An example based on simulated data is considered for illustration.

Bayesian and maximum likelihood estimations from exponentiated log-logistic distribution based on progressive type-II censoring under balanced loss functions

  • Chung, Younshik;Oh, Yeongju
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.425-445
    • /
    • 2021
  • A generalization of the log-logistic (LL) distribution called exponentiated log-logistic (ELL) distribution on lines of exponentiated Weibull distribution is considered. In this paper, based on progressive type-II censored samples, we have derived the maximum likelihood estimators and Bayes estimators for three parameters, the survival function and hazard function of the ELL distribution. Then, under the balanced squared error loss (BSEL) and the balanced linex loss (BLEL) functions, their corresponding Bayes estimators are obtained using Lindley's approximation (see Jung and Chung, 2018; Lindley, 1980), Tierney-Kadane approximation (see Tierney and Kadane, 1986) and Markov Chain Monte Carlo methods (see Hastings, 1970; Gelfand and Smith, 1990). Here, to check the convergence of MCMC chains, the Gelman and Rubin diagnostic (see Gelman and Rubin, 1992; Brooks and Gelman, 1997) was used. On the basis of their risks, the performances of their Bayes estimators are compared with maximum likelihood estimators in the simulation studies. In this paper, research supports the conclusion that ELL distribution is an efficient distribution to modeling data in the analysis of survival data. On top of that, Bayes estimators under various loss functions are useful for many estimation problems.

A study on loss combination in time and frequency for effective speech enhancement based on complex-valued spectrum (효과적인 복소 스펙트럼 기반 음성 향상을 위한 시간과 주파수 영역 손실함수 조합에 관한 연구)

  • Jung, Jaehee;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.38-44
    • /
    • 2022
  • Speech enhancement is performed to improve intelligibility and quality of the noise-corrupted speech. In this paper, speech enhancement performance was compared using different loss functions in time and frequency domains. This study proposes a combination of loss functions to utilize advantage of each domain by considering both the details of spectrum and the speech waveform. In our study, Scale Invariant-Source to Noise Ratio (SI-SNR) is used for the time domain loss function, and Mean Squared Error (MSE) is used for the frequency domain, which is calculated over the complex-valued spectrum and magnitude spectrum. The phase loss is obtained using the sin function. Speech enhancement result is evaluated using Source-to-Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligibility (STOI). In order to confirm the result of speech enhancement, resulting spectrograms are also compared. The experimental results over the TIMIT database show the highest performance when using combination of SI-SNR and magnitude loss functions.

Bayesian estimation for the exponential distribution based on generalized multiply Type-II hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.413-430
    • /
    • 2020
  • The multiply Type-II hybrid censoring scheme is disadvantaged by an experiment time that is too long. To overcome this limitation, we propose a generalized multiply Type-II hybrid censoring scheme. Some estimators of the scale parameter of the exponential distribution are derived under a generalized multiply Type-II hybrid censoring scheme. First, the maximum likelihood estimator of the scale parameter of the exponential distribution is obtained under the proposed censoring scheme. Second, we obtain the Bayes estimators under different loss functions with a noninformative prior and an informative prior. We approximate the Bayes estimators by Lindleys approximation and the Tierney-Kadane method since the posterior distributions obtained by the two priors are complicated. In addition, the Bayes estimators are obtained by using the Markov Chain Monte Carlo samples. Finally, all proposed estimators are compared in the sense of the mean squared error through the Monte Carlo simulation and applied to real data.

3D Cross-Modal Retrieval Using Noisy Center Loss and SimSiam for Small Batch Training

  • Yeon-Seung Choo;Boeun Kim;Hyun-Sik Kim;Yong-Suk Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.670-684
    • /
    • 2024
  • 3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of modalities, such as images, meshes, and point clouds. One of the most prominent methods used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based on center loss, the center features in CLF are also susceptible to subtle changes in hyperparameters and external inferences. For instance, performance degradation is observed when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is unable to adapt to changes in batch size and is vulnerable to data variations that occur during actual inference due to the use of simple Euclidean distance between multi-modal features. To address the problems that arise from small batch training, we propose a Noisy Center Loss (NCL) method to estimate the optimal center features. In addition, we apply the simple Siamese representation learning method (SimSiam) during optimal center feature estimation to compare projected features, making the proposed method robust to changes in batch size and variations in data. As a result, the proposed approach demonstrates improved performance in ModelNet40 dataset compared to the conventional methods.