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Abstract
In this paper, a new extension of Lindley distribution has been introduced. Certain characterizations based

on truncated moments, hazard and reverse hazard function, conditional expectation of the proposed distribution
are presented. Besides, these characterizations, other statistical/mathematical properties of the proposed model
are also discussed. The estimation of the parameters is performed through different classical methods of estima-
tion. Bayes estimation is computed under gamma informative prior under the squared error loss function. The
performances of all estimation methods are studied via Monte Carlo simulations in mean square error sense. The
potential of the proposed model is analyzed through two data sets. A modified goodness-of-fit test using the
Nikulin-Rao-Robson statistic test is investigated via two examples and is observed that the new extension might
be used as an alternative lifetime model.

Keywords: different characterizations, validation test, different method of estimation and applica-
tions

1. Introduction, motivation and physical interpretation

Statistical literature contains a large number of probability distributions for modeling real lifetime
data, the most popular probability distributions are gamma (Ga), lognormal (Log-N), Weibull (W),
and exponentiated exponential (Exp-E) distributions. However, these probability models suffer from
some drawbacks. First, none of them exhibit bathtub shapes for their hazard rate functions (hrfs),
the four models exhibit only monotonically decreasing, monotonically increasing or constant hrfs and
this is a major weakness since most real life systems exhibit bathtub shapes for their hrfs. Second,
at least three of these distributions exhibit constant hazard rates and this is an unrealistic feature
since few real life systems have constant hrf. This work introduces a new three parameter lifetime
distribution as an alternative to the Ga, Log-N, W, and the Exp-E probability models that does not
have the above mentioned drawbacks. The new model, called the Topp Leone Generated Lindley
(TLGLi), is constructed based on the Topp Leone Generated (TLG) family introduced by Rezaei et
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al. (2017). The TLGLi can have unimodal or monotonically decreasing or monotonically increasing
or constant or bathtub hrf (Figure 2).

The cumulative distribution function (cdf) and the probability density function (pdf) of a random
variable (r.v.) X with the Li distribution (Lindley, 1958) are given by

G(x; λ)
∣∣∣∣∣ ((x≥0)

(λ∈R(+))

)
= 1 −

[
(1 + x)λ + 1

1 + λ

]
e−λx,

and

g(x; λ)
∣∣∣∣∣ ((x≥0)

(λ∈R(+))

)
= (1 + x)e−λx

[
λ2

1 + λ

]
,

respectively. The scale parameter λ is a positive real number (R(+)) and can result in a unimodal or
monotone decreasing density. The Li model has a thin tail since the distribution decreases exponen-
tially for large values of x. The Li distribution is one way to describe the lifetime of a process or device
having increasing failure rate. It can be used in a wide variety of fields such as biology, engineering
and medicine. The cdf of the TLGLi model can be expressed as

Fβ,θ,λ(x)
∣∣∣∣(x≥0)
(β, θ, λ∈R(+)) =


(
1 − e−λx (1 + x) λ + 1

1 + λ

)θ 2 − (
1 − e−λx (1 + x) λ + 1

1 + λ

)θ
β

, (1.1)

and the corresponding pdf is

fβ,θ,λ(x)
∣∣∣∣(x≥0)
(β, θ, λ∈R(+)) = 2βθ

λ2

1+λ
(1+x)e−λx

(
1−e−λx (1+x) λ+1

1 + λ

)θβ−1 1−
(
1−e−λx (1+x)λ+1

1+λ

)θ[
2−

(
1−e−λx (1+x)λ+1

1+λ

)θ]1−β . (1.2)

Equations (1.1) and (1.2) are established based on the TLG distribution.
Suppose X1, X2, . . . , Xβ are independent r.v.’s distributed according to

FGLi(x; θ, λ)
∣∣∣∣(x≥0)
(θ, λ∈R(+)) =

(
1 − e−λx (1 + x) λ + 1

1 + λ

)θ 2 − (
1 − e−λx (1 + x) λ + 1

1 + λ

)θ
and represent the failure times of the components of a series system, assumed to be independent. Then
the probability that the system will fail before time x is given by

Pr(max(X1, X2, . . . , Xβ) ≤ x) = Pr (X1 ≤ x) · · · Pr
(
Xβ ≤ x

)
= FGLi(x; θ, λ) × · · · × FGLi(x; θ, λ)

= [FGLi(x; θ, λ)]β
∣∣∣∣(x≥0)
(θ∈R(+), λ∈R(+))

=


(
1 − e−λx (1 + x) λ + 1

1 + λ

)θ 2 − (
1 − e−λx (1 + x) λ + 1

1 + λ

)θ
β

.

So, Equation (1.1) is the distribution of the failure of a series system with independent components
if β ∈ R(+). We shall refer to the new distribution in (1.1) as the TLGLi model. For θ = 1, TLGLi
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reduces to the TLLi model. The cdf (1.1) can be expressed as

Fβ,θ,λ(x)
∣∣∣∣(x≥0)
(β, θ, λ∈R(+)) =

∞∑
ζζζ=0

υυυζζζH(θζζζ+θβ),λ(x), (1.3)

where

υυυζζζ = (−1)ζζζ2β−ζζζ
(
β

ζζζ

)
,

and

H(θζζζ+θβ),λ(x) = [G(x; λ)](θζζζ+θβ) =

(
1 − e−λx (1 + x) λ + 1

1 + λ

)(θζζζ+θβ)

,

is the cdf of the Exp-Li distribution with power parameter (θζζζ + θβ). The corresponding density
function is obtained by differentiating (1.3)

fβ,θ,λ(x)
∣∣∣∣∣ ((x≥0)

(β, θ, λ∈R(+))

)
=

∞∑
ζζζ=0

υυυζζζ h(θζζζ+θβ),λ(x), (1.4)

where

h(θζζζ+θβ),λ(x) = (θζζζ + θβ)
λ2

1 + λ
(1 + x)e−λx︸               ︷︷               ︸
g(x;λ)

×
(
1 − e−λx (1 + x) λ + 1

1 + λ

)(θζζζ+θβ)−1

︸                                  ︷︷                                  ︸
G(x;λ)[(θζζζ+θβ)]−1

,

is the Exp-Li density with power parameter (θζζζ + θβ).Thus, several of its structural properties can be
obtained from Equation (1.4) and those of the Exp-Li distribution.

We provide some plots of the pdf and hrf of the TLGLi model to show its flexibility. Figure 1
displays some plots of the TLGLi density for selected values of β, θ, and λ. These plots reveal that the
new density can be right-skewed with different flexible shapes. The hrf plots of the TLGLi distribution
given in Figure 2 can be unimodal, decreasing, bathtub, increasing and constant shapes.

In the literature, certain generalizations on the Li distribution are proposed and studied (Ghitany
et al., 2008a, b; Deniz and Ojeda, 2011; Ghitany et al., 2011; Nadarajah et al., 2011; Alizadeh et al.,
2016, 2017). This article shows how different estimators of the new distribution perform for different
sample sizes and different parameter values and to promote a guideline for choosing the best esti-
mation method for the new model, which we think would be of interest to applied statisticians. The
unknown parameters of the new distribution are estimated using maximum likelihood, least squares,
weighted least squares, Cramer-Von-Mises and Bayesian methods. The obtained estimators are com-
pared using Monte Carlo simulations; in addition, it is observed that Bayesian estimators are more
efficient compared to other estimators. The TLGLi distribution shows its suitability in modeling
strength and relief times data sets.

The rest of the paper is outlined as follows: Certain characterizations of the TLGLi model are
proposed in Section 2. In Section 3, we discuss some properties of this distribution. In Section 4, we
describe four methods of estimation. In Section 5, the usefulness of the new distribution is illustrated
by means of two real data sets. A modified goodness-of-fit test using a Nikulin-Rao-Robson (NRR)
statistic test is presented in Section 6. In Section 7, a simulation study is carried out to compare the
performance of the four methods of estimation. Section 8 offers some concluding remarks.
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Figure 1: Plots of the probability density function of the Topp Leone Generated Lindley for selected parameter
values.

Figure 2: Plots of the hazard rate function of the Topp Leone Generated Lindley for selected parameter values.
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2. Characterizations

In this Section, we present a number of characterizations of the TLGLi distribution in the following
directions: (i) in terms of the ratio of two truncated moments; (ii) in terms of the hazard function;
(iii) based on the reverse hazard function; and (iv) in terms of the conditional expectation of certain
function of the random variable. These characterizations are presented in four subsections.

2.1. Characterizations in terms of two truncated moments

Certain characterizations of TLGLi distribution based on a simple relationship between two truncated
moments are presented. The first characterization employs a theorem due to Glänzel (1987), see
Hamedani et al. (2018a; 2018b, Theorem 1) and in the Appendix. However, the results holds also
when the interval H is not closed since the condition of the Theorem is on the interior of H.

Proposition 1. Let X : Ω→ (0,∞) be a continuous random variable and let

q1(x) =

[
2 −

(
1 − e−λx (1+x)λ+1

1+λ

)θ]1−β

1 −
(
1 − e−λx (1+x)λ+1

1+λ

)θ
and

q2(x) = q1(x)
(
1 − e−λx (1 + x)λ + 1

1 + λ

)θβ∣∣∣∣∣∣∣
(x≥0)

.

The random variable X has pdf (1.2) only if the function ξ defined in Theorem 1 is of the form

ξ(x) =
1
2

1 +
(
1 − e−λx (1 + x) λ + 1

1 + λ

)θβ
∣∣∣∣∣∣∣
(x≥0)

.

Proof: Suppose the random variable X has pdf (1.2), then

(1 − F(x)) E
[
q1(x)|X ≥ x

]
= 2

1 −
(
1 − e−λx (1 + x) λ + 1

1 + λ

)θβ
∣∣∣∣∣∣∣
(x≥0)

and

(1 − F(x)) E
[
q2(x)|X ≥ x

]
=

1 −
(
1 − e−λx (1 + x) λ + 1

1 + λ

)2θβ

∣∣∣∣∣∣∣
(x≥0)

.

Further,

ξ(x)q1(x) − q2(x) =
q1(x)

2

1 −
(
1 − e−λx (1 + x) λ + 1

1 + λ

)θβ > 0

∣∣∣∣∣∣∣
(x≥0)

.

Conversely, if ξ has the above form, then

s′(x) =
q1(x)ξ′ (x)

ξ(x)q1(x) − q2(x)
=
βθλ2 (1 + x) e−λx

(
1 − e−λx (1+x)λ+1

1+λ

)θβ−1

(1 + λ)
{
1 −

(
1 − e−λx (1+x)λ+1

1+λ

)θβ}
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and

s(x) = − log

1 −
(
1 − e−λx (1 + x) λ + 1

1 + λ

)θβ
∣∣∣∣∣∣∣
(x>0)

.

Now, according to Theorem 1, X has pdf (1.2). �

Corollary 1. Let X : Ω → (0,∞) be a continuous random variable and let q1(x) be as given in
Proposition 1. The random variable X has pdf (1.2) only if there exist functions q2 and ξ defined in
Theorem 1 satisfying the following differential equation

q1(x)ξ′(x)
ξ(x)q1(x) − q2(x)

=
βθλ2(1 + x)e−λx

(
1 − e−λx (1+x)λ+1

1+λ

)θβ−1

(1 + λ)
{
1 −

(
1 − e−λx (1+x)λ+1

1+λ

)θβ}
∣∣∣∣∣∣∣∣∣∣
(x>0)

.

Corollary 2. The general solution of the differential equation in Corollary 1 is

ξ(x) =

1 −
(
1 − e−λx (1 + x) λ + 1

1 + λ

)θβ
−1

×
−∫

βθλ2

(1 + λ)
(1 + x) e−λx

(
1 − e−λx (1 + x) λ + 1

1 + λ

)θβ−1

(q1(x))−1 q2(x)dx + D

 ,
where D is a constant. One set of functions satisfying the above differential equation is given in
Proposition 1 with D = 1/2. Of course, there are other triplets of function (q1, q2, ξ) which satisfy
conditions of Theorem 1.

2.2. Characterization based on hazard function

The hazard function, hF , of a twice differentiable distribution function, F, satisfies the following
differential equation

f ′(x)
f (x)

= −hF(x) +
h′F(x)
hF(x)

.

For many univariate continuous distributions, the above equation is the only differential equation
available in terms of the hazard function. In this subsection we present a non-trivial characterization
of TLGLi distribution, for λ = θ = β = 1, based on the hazard function.

Proposition 2. Let X : Ω → (0,∞) be a continuous random variable. The random variable X
has pdf (1.2), for λ = θ = β = 1, only if its hazard function hF(x) satisfies the following first order
differential equation

hF(x)
(1 + x)(2 + x)

+ h′F(x) = 0
∣∣∣∣∣
(x>0)

.

Proof: Is straightforward and hence omitted. �
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2.3. Characterization based on reverse hazard function

The reverse hazard function, rF , of a twice differentiable distribution function, F, is defined as

rF(x) =
f (x)
F(x)

, x ∈ support of F.

In this subsection we present a characterization of TLGLi distribution, for λ = θ = 1, based on the
reverse hazard function.

Proposition 3. Let X : Ω → (0,∞) be a continuous random variable. The random variable X has
pdf (1.2) for λ = θ = 1 only if its reverse hazard function rF(x) satisfies the following first order
differential equation

2rF(x) + r′F(x) = 2βe−2x d
dx

{
(2 + x)(1 + x)
−(2 + x)2e−2x + 4

}∣∣∣∣∣∣
(x>0)

.

Proof: Is straightforward and hence omitted. �

2.4. Characterization based on the conditional expectation of certain function of the
random variable

Here, we employ a function ψψψ of X and present characterize the distribution of X in terms of the trun-
cated moment ofψψψ(X). The following proposition appeared in Hamedani’s previous work (Hamedani,
2013), so we just state it here and use it to characterize TLGLi distribution, for λ = θ = β = 1.

Proposition 4. Let X : Ω →(e, f ) be a continuous random variable with cdf F. Let ψψψ(x) be a
differentiable function on (e, f ) with limx→e+ ψψψ(x) = 1. Then for δ , 1,

E
[
ψψψ(X)|X ≥ x

]
= δψψψ(x)

∣∣∣[x∈(e, f )]

only if

ψψψ(x) = (1 − F(x))
1
δ−1

∣∣∣∣[x∈(e, f )]
.

Remark 1. For (e, f ) = (0,∞), λ = θ = β = 1,ψψψ(x) = (1 + (1/2)x)e−x and δ = 2/3, Proposition 4
provides a characterization of TLGLi distribution for λ = θ = β = 1.

3. Mathematical properties

The rth ordinary moment of X is given by

µ′r = E(Xr) =
∞∑
ζζζ=0

υυυζζζ

∫ ∞

−∞
xr h(θζζζ+θβ),λ(x)dx

= (θζζζ + θβ)
λ2

1 + λ

∞∑
ζζζ=0

υυυζζζk ((θζζζ + θβ) , λ, r, λ) , (3.1)
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where

k (a, b, r, δ) =
∫ ∞

0
xr (1 + x)

(
1 − 1 + b + bx

1 + b
e−bx

)a−1

e−δxdx

=

∞∑
i=0

i∑
j=0

j+1∑
m=0

ζ(a,r)
i, j,m Γ (1 + r + m) ,

and

ζ(a,r)
i, j,m =

(−1)ib j

(1 + b)i (bi + δ)1+r+m

(
a − 1

i

)(
i
j

)(
j + 1
m

)
.

The first four moments of X are

µ′1 =
(θζζζ + θβ) λ2

1 + λ

∞∑
ζζζ=0

υυυζζζk ((θζζζ + θβ) , λ, 1, λ) ,

µ′2 =
(θζζζ + θβ) λ2

1 + λ

∞∑
ζζζ=0

υυυζζζk ((θζζζ + θβ) , λ, 2, λ) ,

µ′3 =
(θζζζ + θβ) λ2

1 + λ

∞∑
ζζζ=0

υυυζζζk ((θζζζ + θβ) , λ, 3, λ) ,

µ′4 =
(θζζζ + θβ) λ2

1 + λ

∞∑
ζζζ=0

υυυζζζk ((θζζζ + θβ) , λ, 4, λ) .

The skewness and kurtosis measures can be calculated from the ordinary moments using well-known
relationships.

The µ′1, variance, skewness and kurtosis of the TLGLi distribution are computed numerically
for selected values of λ, β, and θ using the Mathcad program Version 15.0. The numerical values
displayed in Table 1 indicate that the skewness of the new model is always positive and can range in
the interval (0.68, 3.18). The spread for its kurtosis is larger ranging from 3.77 to 16.92.

The moment generating function (mgf) MX(t) = E(etX) of X can be derived using Equation (3.1)
as

MX(t) =
(θζζζ + θβ) λ2

1 + λ

∞∑
ζζζ=0

υυυζζζ k ((θζζζ + θβ) , λ, 0, λ)|(λ>t) .

The characteristic function (cf) of X, ϕϕϕX(t) = E(eit X), and the cumulative generating function (cgf) of
X, KX(t) = logϕϕϕX(t), are given by

ϕϕϕX(t) =
(θζζζ + θβ) λ2

1 + λ

∞∑
ζζζ=0

υυυζζζ k ((θζζζ + θβ) , λ, 0, iλ) ,

and

KX(t) =
(θζζζ + θβ) λ2

1 + λ

∞∑
ζζζ=0

υυυζζζ log
[
k ((θζζζ + θβ) , λ, 0, iλ)

]
,
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Table 1: Mean, variance, skewness and kurtosis of the Topp Leone Generated Lindley distribution with different
values of parameters

λ β θ µ′1 Variance Skewness Kurtosis

0.5 0.5

0.5 0.5283 0.9050 3.1750 16.9179
1.5 1.7810 2.6030 1.4835 5.9315
3.0 3.0484 3.5869 1.0063 4.3890
5.0 4.1345 4.0290 0.8156 3.9783
10 5.7107 4.2990 0.6821 3.7671

1.0 1.5

0.5 0.5165 0.3515 2.1602 9.6757
1.5 1.4047 0.6927 1.1384 4.9824
3.0 2.1364 0.8069 0.8925 4.3499
5.0 2.7128 0.8435 0.8038 4.1739
10 3.5140 0.8562 0.7464 4.0793

2.0 2.5

0.5 0.3065 0.0882 1.9651 8.7477
1.5 0.7665 0.1568 1.1332 5.0869
3.0 1.1286 0.1785 0.9343 4.5435
5.0 1.4109 0.1858 0.8612 4.3793
10 1.8025 0.1887 0.8127 4.2841

4.0 5.0

0.5 0.2006 0.0229 1.6979 7.5324
1.5 0.4420 0.0351 1.1204 5.1709
3.0 0.6206 0.0386 0.9823 4.7674
5.0 0.7580 0.0399 0.9301 4.6324
10 0.9478 0.0406 0.8939 4.5461

10 10

0.5 0.1006 0.0036 1.5163 6.8066
1.5 0.1982 0.0049 1.1258 5.2763
3.0 0.2674 0.0053 1.0308 4.9781
5.0 0.3201 0.0055 0.9936 4.8694
10 0.3927 0.0056 0.9663 4.7934

respectively, where i =
√
−1.

The sth incomplete moment, say cs(t), of X can be expressed as

cs(t) =
∞∑
ζζζ=0

υυυζζζ

∫ t

−∞
xs h(θζζζ+θβ),λ(x)dx

=
(θζζζ + θβ) λ2

1 + λ

∞∑
ζζζ=0

υυυζζζτ ((θζζζ + θβ) , λ, s, λ, t) ,

where

τ (a, b, s, δ, t) =
∫ ∞

t
xs (1 + x)

(
1 − e−bx (1 + x) b + 1

1 + b

)a−1

e−δxdx

=

∞∑
i=0

i∑
j=0

j+1∑
m=0

ζ(a,s)
i, j,mγ (s + m + 1, (bi + δ) t) ,

and γ(ζ, q) is the incomplete gamma function

γ (ξ1, ξ2) |(ξ1,0,−1,−2,...) =

∫ ξ2

0
tξ1−1e−tdt

=
ξ
ξ1
2

ξ1

{
1F1

[
ξ1; ξ1 + 1;−ξ2

]}
=

∞∑
ζζζ=0

(−1)ζζζ

ζζζ! (ξ1 + ζζζ)
ξ
ξ1+ζζζ
2 ,
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where 1F1[ · , · , · ] is a confluent hypergeometric function. If s is an integer, then (a, b, s, δ, t) can be
simplified to

τ (a, b, r, δ, t) =
∞∑

i=0

i∑
j=0

r+m∑
l=0

j+1∑
m=0

ζ(a,s)
i, j,m

(bi + δ)l (r + m)!
l!e(bi+δ)t .

The nth moment of the residual life, say

mn(t) = E
[
(X − t)n

∣∣∣∣ ((n=1,2,...)
(X>t)

)]
,

The nth moment of the residual life of X is given by

mn(t) =

∫ ∞
t (x − t)n fβ,θ,λ(x)dx

1 − Fβ,θ,λ(t)
.

Therefore

mn(t) =
(θζζζ + θβ) λ2

[1 − F(t)] (1 + λ)

∞∑
ζζζ=0

n∑
r=0

(1 − t)n υυυζζζτ ((θζζζ + θβ) , λ, n, λ, t) .

The nth moment of the reversed residual life can be expressed as

Mn(t) = E
[
(t − X)n

∣∣∣∣ ((n=1,2,...)
(X≤t, t>0)

)]
or

Mn(t) =

∫ t
0 (t − x)n fβ,θ,λ(x)dx

Fβ,θ,λ(t)
.

Then, the nth moment of the reversed residual life of X becomes

Mn(t) =
(θζζζ + θβ) λ2

F(t) (1 + λ)

∞∑
ζζζ=0

n∑
r=0

(−1)r
(
n
r

)
tn−rυυυζζζτ ((θζζζ + θβ) , λ, n, λ, t) .

The reliability, say R, of the system is the probability that the system is strong enough to over-
come the stress imposed on it. Let X1 and X2 be two independent r.v.’s with TLGLi(β1, θ1, λ) and
TLGLi(β2, θ2, λ) distributions. Thus R(X1>X2)(X1, X2) can be expressed as

R(X1>X2)(X1, X2) = Pr(X1 > X2) =
∞∑

ζζζ, j=0

Ωζζζ, j ,

where

Ωζζζ, j =

∞∑
ζζζ, j=0

(−1)ζζζ+ j2β1+β2−ζζζ− j[
(β2 + j) θ2

] {[
(β1 + ζζζ) θ1

]
+

[
(β2 + j) θ2

]} (β1

ζζζ

)(
β2

j

)
.
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Let X1, . . . , Xn be a random sample (r.s.) from the TLGLi distribution and let X1:n, . . . , Xn:n be the
corresponding order statistics. The pdf of ith order statistic, Xi:n, can be written as

fi:n(x) =
n−i∑
j=0

(−1) j
(

n−i
j

)
B (i, n − i + 1)

f (x) F j+i−1(x), (3.2)

where B( · , · ) is the beta function. Substituting (1.1) and (1.2) in Equation (3.2), the pdf of Xi:n can
be expressed as

fi:n(x) =
n−i∑
j=0

∞∑
w,d=0

t j,w,dhw+d,λ(x),

where

t j,w,d =
w(−1) jtwδ j+i−1,d

B (i, n − i + 1) (w + d)
,

and δ j+i−1,d can be obtained recursively from

δ j+i−1,d |(d≥1) =
1

dt0

d∑
m=0

tm
[
m ( j + i) − d

]
δ j+i−1,d−m,

where δ j+i−1,0 = t j+i−1
0 . Then, the qth moment of Xi:n can be expressed as

E
(
Xq

i:n

)
= α

λ2

1 + λ

n−i∑
j=0

∞∑
w,d=0

k (w + d, λ, q, λ) .

4. Different methods of estimation

4.1. Maximum likelihood method

Let X1, X2, . . . , Xn be a r.s. from the TLGLi distribution with observed values x1, x2, . . . , xn, and ΨΨΨ
= (β, θ, λ)T be the vector of the model parameters. The log likelihood function forΨΨΨmay be expressed
as

ℓ = ℓ (ΨΨΨ) = n log 2 + n log β + n log θ + 2n log λ − n log (1 + λ)

+

n∑
i=1

log(1 + xi) − λ
n∑

i=1

xi + (θβ − 1)
n∑

i=1

log qi

+

n∑
i=1

log
(
1 − qθi

)
+ (β − 1)

n∑
i=1

log
(
2 − qθi

)
, (4.1)

where

qi =

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)
.
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The maximum likelihood estimators (MLEs) of β, θ and λ are obtained from differentiating Equation
(4.1) with respect to β, θ, and λ

Uβ =
n
β
+ θ

n∑
i=1

log qi +

n∑
i=1

log
(
2 − qθi

)
,

Uθ =
n
θ
+ β

n∑
i=1

log qi −
n∑

i=1

qθi log qi

1 − qθi
− (β − 1)

n∑
i=1

qθi log qi

2 − qθi
,

Uλ =
2n
λ
− n

1 + λ
−

n∑
i=1

xi + (θβ − 1)
n∑

i=1

wi

qi
−

n∑
i=1

θwiqθ−1
i

1 − qθi
− (β − 1)

n∑
i=1

θwiqθ−1
i

2 − qθi
,

where

wi = −
1

1 + λ

[
−xi (λx + λ + 1i) e−λxi + (1 + xi) e−λxi

]
.

Setting them equal to zero and solving the system simultaneously yields the MLE Ψ̂ΨΨ = (β̂, θ̂, λ̂)T of
ΨΨΨ = (β, θ, λ)T . The above equations cannot be solved analytically. So, statistical software can be used
to solve them numerically using the iterative methods such as the Newton-Raphson type algorithms
(for more details see Casella and Berger (2002)).

4.2. Method of ordinary least square and weighted least square estimation

The theory of ordinary least square (OLS) estimation and weighted least square (WLS) estimation was
originally proposed by Swain et al. (1988) to estimate the parameters of the Beta distribution. This
theory is based on minimizing the sum of the square of differences of theoretical cdf and empirical
cdf.

Suppose that Fβ,θ,λ(Xi:n) denotes the distribution function of TLGLi distribution and if x1 < x2 <
· · · < xn be the n ordered random sample. The OLS estimators (OLSE) of the parameters (β, θ, λ) are
obtained by minimizing

OLS(β,θ,λ) =

n∑
i=1

{
F(xi, β, θ, λ) −

( i
1 + n

)}2

,

then

OLS(β,θ,λ) =

n∑
i=1



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

−
( i
1 + n

)
2

.

The OLSE of the parameters (β, θ, λ) are obtained by solving the following non-linear equations

n∑
i=1



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

−
( i
1 + n

)ηηηβ(xi, β, θ, λ) = 0,

n∑
i=1



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

−
( i
1 + n

)ηηηθ(xi, β, θ, λ) = 0,

n∑
i=1



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

−
( i
1 + n

)ηηηλ(xi, β, θ, λ) = 0,
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where ηηηβ(xi, β, θ, λ)ηηηθ(xi, β, θ, λ), and ηηηλ(xi, β, θ, λ) are the values of the first derivatives of the cdf with
respect to (w.r.t.) parameters of TLGLi model.

The OLSE of the parameters (β, θ, λ) are obtained via solving the above simultaneous equations
by using any numerical approximation techniques. The WLS estimates (WLSE) are obtained by
minimizing the given form of equation w.r.t. the parameters

WLS(β,θ,λ) =

n∑
i=1

wi

[
F(xi; β, θ, λ) −

( i
1 + n

)]2

.

The WLSE of the parameters are obtained by solving the following non-linear equations

n∑
i=1

wi



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

−
( i
1 + n

)ηηηβ(xi, β, θ, λ) = 0,

n∑
i=1

wi



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

−
( i
1 + n

)ηηηθ(xi, β, θ, λ) = 0,

n∑
i=1

wi



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

−
( i
1 + n

)ηηηλ(xi, β, θ, λ) = 0,

where ηηηβ(xi, β, θ, λ), ηηηθ(xi, β, θ, λ), and ηηηλ(xi, β, θ, λ) are the values of first derivatives of the cdf of
TLGLi distribution and

wi =
(n + 1)2(n + 2)

i(n − i + 1)
.

4.3. Method of Cramer-Von-Mises estimation

The Cramer-Von- Mises estimation method of the parameters is based on the theory of minimum dis-
tance estimation (MacDonald, 1971). The Crammer-Von Mises estimates (CVME) of the parameter β,
θ, and λ are obtained by minimizing the following expression w.r.t. the parameters β, θ, λ respectively.

CVM(β,θ,λ) =
1

12n
+

n∑
i=1

[
Fβ,θ,λ(xi:n) − −1 + 2i

2n

]2

,

and

CVM(β,θ,λ) =

n∑
i=1



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

− −1 + 2i
2n


2

.

The CVME of the parameters are obtained by solving the following non-linear equations

n∑
i=1



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

− −1 + 2i
2n

ηηηβ(xi, β, θ, λ) = 0,

n∑
i=1



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

− −1 + 2i
2n

ηηηθ(xi, β, θ, λ) = 0,
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and

n∑
i=1



(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ 2 − (
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β

− −1 + 2i
2n

ηηηλ(xi, β, θ, λ) = 0,

where ηηηβ(xi, β, θ, λ), ηθ(xi, β, θ, λ), and ηλ(xi, β, θ, λ) are the values of the first derivatives of the cdf of
TLGLi distribution w.r.t. β, θ, λ respectively.

4.4. Bayes estimation

Using the squared error loss function (SELF), the Bayes estimators are computed under informative
gamma priors for all β, θ, and λ. The joint prior is given by

p(β, θ, λ) ∝ βa1−1θa2−1λa3−1e−b1β−b2θ−b3λ; β, θ, λ > 0,

where the hyperparameters a1, b1, a2, b2, a3, and b3 assume to be known and positive and

SELF
(
δ̂, δ

)
= E(δ̂ − δ)2

and δ̂ is the estimated value of δ. The posterior distribution is needed to derive the Bayes estimators.
The posterior distribution of the TLGLi distribution can be written as

π(β, θ, λ|x) ∝ βn+a1−1θn+a2−1 λ
2n+a3−1

(1 + λ)n e−b1β−b2θ−b3λ−λ
∑n

i=1 xi

n∏
i=1

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θβ−1

×
n∏

i=1


1 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
2 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β−1 .

Under this loss function, posterior mean is the Bayes estimate of the respective parameter. Thus, the
Bayes estimators under SELF are obtained as

β̂B = E(β|θ, λ, x) =
∫
θ,λ

βn+a1θn+a2−1 λ
2n+a3−1

(1 + λ)n e−b1β−b2θ−b3λ−λ
∑n

i=1 xiΦ(xi)dθdλ,

where

Φ(xi) =
n∏

i=1

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θβ−1

×

1 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
2 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β−1 ,

θ̂B = E(θ|β, λ, x) =
∫
β,λ

βn+a1−1θn+a2
λ2n+a3−1

(1 + λ)n e−b1β−b2θ−b3λ−λ
∑n

i=1 xiΦ(xi) dβdλ,

λ̂B = E(λ|β, θ, x) =
∫
β,θ

βn+a1−1θn+a2−1 λ2n+a3

(1 + λ)n e−b1β−b2θ−b3λ−λ
∑n

i=1 xiΦ(xi) dβdθ,
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respectively. The above equations cannot be solved analytically, thus we use Markov chain Monte
Carlo (MCMC) technique to generate the posterior sample from the full conditional posterior distri-
bution. The full conditional posterior distributions are given by

π1(β|θ, λ, x) ∝ βn+a1−1e−bβ
n∏

i=1

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θβ−1
2 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β−1

,

π2(θ|β, λ, x) ∝ θn+a2−1e−b2θ
n∏

i=1

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θβ−1

×
n∏

i=1


1 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
2 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β−1 ,

π3(λ|β, θ, x) ∝ λ2n+a3−1

(1 + λ)n e−b3λ−λ
∑n

i=1 xi

n∏
i=1

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θβ−1

×
n∏

i=1


1 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
2 −

(
1 − e−λxi

(1 + xi) λ + 1
1 + λ

)θ
β−1 .

The following steps are used to extract the posterior samples from full-conditional posterior density

• Starts with j = 1 and set initial values of β, θ, λ say β0, θ0, λ0;

• Generate posterior samples from full conditional distribution using normal distribution as a proposal
density;

• Repeat the above step for j = 1, 2, . . . ,M and simulate (β1, θ1, λ1), (β1, θ1, λ1), . . . , (βM, θM, λM);

• Under SELF, the Bayes estimates of β, θ, λ are given by

β̂S =

∑M−M0
j=1 β j

M −M0
,

θ̂S =

∑M−M0
j=1 θ j

M −M0
,

λ̂S =

∑M−M0
j=1 λ j

M −M0
,

where, M0 is the burn in period.

5. Data analysis

In this section, real data sets are used to demonstrate the real life applicability of the proposed model
using MLE, LS, WLS, and CVM. We consider the Cramér-Von Mises (W∗), the Anderson-Darling
(A∗), and the Kolmogorov-Smirnov (KS) statistic. The W∗ and A∗ statistics are given by

W∗ =
(
1 +

1
2n

)  1
12n
+

n∑
h=1

τ(n)
h

 ,
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Table 2: The values of estimators, KS, p-values, W∗, and A∗

Method β̂ θ̂ λ̂ KS p-value W∗ A∗

MLE 19.04243 3.126965 1.249401 0.08472 0.7564 0.0658 0.3444
LS 18.06670 2.310553 1.128924 0.06427 0.9571 0.0628 0.3331

WLS 21.02794 2.369555 1.168441 0.07204 0.8993 0.0640 0.3372
CVM 21.01143 2.227783 1.145041 0.06687 0.9408 0.0635 0.3353

KS = Kolmogorov-Smirnov; W∗ = Cramér-Von Mises; A∗ = Anderson-Darling; MLE = maximum likelihood estimators;
LS = least squares; WLS = weighted LS; CVM = Crammer-Von Mises.

and

A∗ = a(n)

(
n + n−1

∑n

h=1
v(n)

h

)
,

where

τ(n)
h =

(
zh −

2h − 1
2n

)2

,

a(n) =
3n−1

4
+

9n−2

4
+ 1,

v(n)
h = log [(1 − zn−h+1) zi] (2h − 1) ,

where zh = F (yh) and the yh’s values are the ordered observations.

5.1. Application 1

The first data with size 63 shows the strength measured in GPa for single carbon fibers and impreg-
nated at gaugelengths of 20mm. The data are:

1.9010, 2.132, 2.203, 2.2280, 2.257, 2.350, 2.361, 2.3960, 2.397, 2.445, 2.4540, 2.474, 2.518, 2.5220,
2.525, 2.5320, 2.575, 2.614, 2.616, 2.6180, 2.624, 2.659, 2.6750, 2.738, 2.740, 2.8560, 2.917, 2.928,
2.9370, 2.937, 2.9770, 2.9960, 3.030, 3.125, 3.139, 3.1450, 3.220, 3.223, 3.2350, 3.243, 3.264, 3.272,
3.2940, 3.332, 3.346, 3.377, 3.408, 3.4350, 3.493, 3.501, 3.537, 3.554, 3.5620, 3.628, 3.852, 3.871,
3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

In general, the smaller value of KS, the better fit to the data. Table 2 gives the values of estimators of
α, β, and λ, the KS test statistics and its p-value for TLGLi for the four different estimation methods.

From Table 2 we conclude that the LS method is the best method for modelling the carbon fibers
with KS = 0.06427, p-value = 0.9571, W∗ = 0.0628, and A∗ = 0.3331. However all other methods
performed well. Finally, we can say that the CVM is better that the WLS method in modelling the
carbon fibers. The fitted density, the relative histogram with the fitted density of the proposed model
for various methods and fitted survival function for data-I, are also piloted and given in Figure 3.

5.2. Application 2

The second data set represents on the relief times of twenty patients receiving an analgesic. The data
are:

1.10, 1.4, 1.30, 1.7, 1.90, 1.8, 1.6, 2.20, 1.7, 2.70, 4.1, 1.80, 1.5, 1.20, 1.4, 30, 1.7, 2.30, 1.6, 2
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Figure 3: Fitted density, the histograms with the fitted density of the TLGLi distribution for various methods
and fitted survival function for data I. TLGLi = Topp Leone Generated Lindley; MLE = maximum likelihood

estimator; LS = Least square; WLS = weighted least square; CVM = Crammer-Von Mises.

Table 3: The values of estimators, KS, p-values, W∗, and A∗

Method β̂ θ̂ λ̂ KS p-value W∗ A∗

MLE 83.98383 0.450189 1.322298 0.13861 0.8369 0.0578 0.3399
LS 87.57996 0.45128 1.389133 0.11138 0.9651 0.0577 0.3396

WLS 89.28296 0.41184 1.316787 0.10808 0.9736 0.0591 0.3477
CVM 101.4514 0.52226 1.499851 0.09269 0.9954 0.0525 0.3078

KS = Kolmogorov-Smirnov; W∗ = Cramér-Von Mises; A∗ = Anderson-Darling; MLE = maximum likelihood estimator;
LS = Least square; WLS = weighted LS; CVM = Crammer-Von Mises.

(Gross and Clark, 1975).
From Table 3 we conclude that the CVM method is the best method for modelling the relief times

data with KS = 0.09269, p-value = 0.9954, W∗ = 0.0525, and A∗ = 0.3078. However all other
methods performed well.

The fitted density plot, the relative histogram plot with the fitted density of the proposed model
and fitted survival function for data-II are given in Figure 3. Afterall, from Figures 3 and 4, it has
been noticed that the proposed model fitted well to the considered data set.

6. Goodness-of-fit test for TLGLi model in complete data case

6.1. Nikulin-Rao-Robson statistic test for complete data

The NRR statistic (Y2
n (Ψ̂ΨΨn)) given by Nikulin (1973) and Rao-Robson (1974) is a famous modified chi-

squared goodness-of-fit test (Pearson, 1900). This statistical test is based on the differences between
theoretical and empirical probabilities that fall into grouping cells. It uses the maximum likelihood
estimation on the initial data (for more details see Voinov et al. (2013)). Let X = (X1, X2, . . . , Xn)T be
a random sample of n independent and identically distributed r.v.s. We want to test the following null
composite hypothesis H0

H0 : PΨΨΨ(Xi ≤ x) = F(x,ΨΨΨ), x ∈ R, ΨΨΨ = (θ1, θ2, . . . , θs)T ,
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Figure 4: Fitted density, the histograms with the fitted density of the TLGLi distribution for various methods and
fitted survival function for data II. TLGLi = Topp Leone Generated Lindley. TLGLi = Topp Leone Generated
Lindley; MLE = maximum likelihood estimator; LS = least square; WLS = weighted least square; CVM =

Crammer-Von Mises.

and ν j = (ν1, ν2, . . . , νr)T is the vector of frequencies (where
∑ζζζ

j=1 ν j = n) obtained by grouping Xi

into r intervals I j :

I j =
]
a j−1, a j

]
; −∞ < a1 < · · · < ar−1 < ar = +∞.

The boundaries of the intervals a j are:

a j|( j=1,...,r−1) = F−1
( j
r

)
.

The NRR statistic, with Ψ̂ΨΨn as a maximum likelihood estimator of the parameter vector θ, is defined
by

Y2
n

(
Ψ̂ΨΨn

)
= X2

n

(
Ψ̂ΨΨn

)
+

1
n

LT
(
Ψ̂ΨΨn

) (
I
(
Ψ̂ΨΨn

)
− J

(
Ψ̂ΨΨn

))−1
L
(
Ψ̂ΨΨn

)
.

The Pearson’s statistic X2
n(ΨΨΨ) = XT

n (ΨΨΨ)Xn(ΨΨΨ), where

Xn(θ) =

ν1 − n Pr1(ΨΨΨ)

[n Pr1(ΨΨΨ)]
1
2

,
ν2 − n Pr2(ΨΨΨ)

[n Pr2(ΨΨΨ)]
1
2

, . . . ,
νr − n Prr(ΨΨΨ)

[n Prr(ΨΨΨ)]
1
2

T

,

where vector of probabilities Pr(ΨΨΨ) = (Pr1(ΨΨΨ), Pr2(ΨΨΨ), . . . ,Prr(ΨΨΨ))T , with

Prj(ΨΨΨ) |( j=1,2,...,r) =

∫ a j

a j−1

f (x,ΨΨΨ) dx.

The I(ΨΨΨn) is the Fisher information matrix, and

l(ΨΨΨ) = (l1(ΨΨΨ), . . . , ls(ΨΨΨ))T ; with lζζζ(ΨΨΨ) =
r∑

i=1

νi

Pri

∂

∂ΨΨΨζζζ
[Pri(ΨΨΨ)] .
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J(ΨΨΨ) = B(ΨΨΨ)T B(ΨΨΨ) represents the Fisher information matrix of any distribution with parameters
Pr(ΨΨΨ), where

B(ΨΨΨ) =
[

1
√

Pri

∂Pri(ΨΨΨ)
∂µ

]
r×s

∣∣∣∣∣∣
(i=1,2,...,r and ζζζ=1,...,s)

.

Under the null hypothesis H0, the NRR (Y2
n (Ψ̂ΨΨn)) statistic follow a chi-square distribution with r − 1

degrees of freedom. For any fixed x > 0, we have:

lim
n→∞

Pr
(
Y2

n

(
Ψ̂ΨΨn

)
≥ x

)
= Pr

(
χ2

r−1 ≥ x
)
.

6.2. Validity of TLGLi model

We test the following null hypothesis H0. The distribution of the sample XXX = (X1, X2, . . . , Xn)T is
given by

H0 : P(Xi ≤ x) = Fβ,θ,λ(x), ψψψ = (β, θ, λ)T , x ≥ 0,

where Fβ,θ,λ(x) is given by (1.1). To reveal the usefulness of the modified chi-square NRR (Y2
n (ψ̂ψψn))

statistic test and the pertinence of the TLGLi distribution, we consider two real demonstrative data
sets.

Example 1. Data was reported by Badar and Priest (1982) with size 63 shows the strength mea-
sured in GPa for single carbon fibers and impregnated at gaugelengths of 20mm. We choose r = 5
intervals, Using the BB package of R language, the MLE’s parameters of the TLGLi(β, θ, λ) distribu-
tion are the following:

β̂ = 1.6115, θ̂ = 1.6404, λ̂ = 0.5442.

We can aver that

Y2
n

(
ψ̂ψψn

)
≤ χ2

r−1,α=0.05 = 9.4877,

since

Y2
n

(
ψ̂ψψn

)
= 7.9904

thus, the strength measured in GPa for single carbon fibers follows a TLGLi distribution with ψ̂ψψn
parameters.

Example 2. The data constitutes twenty observations of the lifetime data relating to relief times (in
minutes) of patients receiving an analgesic. This data was reported by Gross and Clark (1975). We
take r = 4 intervals; then the values of the estimated parameters of our TLGLi (β, θ, λ) are:

β̂ = 2.0579, θ̂ = 2.1668, λ̂ = 0.9837.

The NRR statistic tests Y2
n (ψ̂ψψn) = 7.4017. It is clear that

Y2
n

(
ψ̂ψψn

)
≤ χ2

r−1,α=0.05 = 7.8147.

We conclude that we have a concordance of the analgesic failure time data and our TLGLi model.
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Table 4: Average values of estimates and mean squared errors (in parentheses) for n = 20

Parameters MLE LS WLS CVM Bayesian
β = 2.0 2.3532 (0.38887) 2.1393 (2.08396) 1.8615 (1.17179) 1.8403 (0.78797) 1.9825 (0.36291)
θ = 0.9 1.0345 (0.05332) 1.0082 (0.28217) 1.0695 (0.37182) 0.9998 (0.27709) 0.9725 (0.05102)
λ = 1.5 1.4189 (0.04491) 1.6744 (0.49578) 1.3668 (0.56632) 1.8278 (0.75370) 1.4062 (0.02231)
β = 1.2 1.3733 (0.14894) 1.7486 (1.73004) 1.6431 (1.47016) 1.6111 (0.89955) 1.0090 (0.11238)
θ = 1.25 1.3593 (0.07589) 1.5477 (0.49841) 1.4652 (0.53282) 1.5500 (0.44179) 1.1924 (0.06207)
λ = 0.5 0.4919 (0.00380) 0.5382 (0.14299) 0.6003 (0.31093) 0.5259 (0.14304) 0.4726 (0.00175)
β = 2.5 2.6570 (0.56914) 2.4663 (1.45153) 2.2088 (1.86197) 2.4313 (1.59231) 2.5121 (0.53294)
θ = 0.8 0.8241 (0.02121) 0.9339 (0.10929) 0.9314 (0.21013) 0.9520 (0.14371) 0.8321 (0.02019)
λ = 0.3 0.3012 (0.00128) 0.3745 (1.19557) 0.3345 (0.06211) 0.5054 (3.00787) 0.2752 (0.00089)

MLE = maximum likelihood estimator; LS = least square; WLS = weighted least square; CVM = Crammer-Von Mises.

Table 5: Average values of estimates and mean squared errors for n = 50

Parameters MLE LS WLS CVM Bayesian
β = 2.0 2.2743 (0.15772) 1.8969 (0.39803) 1.8156 (0.93618) 1.8654 (0.38163) 1.9625 (0.13194)
θ = 0.9 1.0101 (0.02351) 0.8766 (0.06023) 1.0299 (0.32983) 0.9116 (0.18209) 0.8562 (0.02127)
λ = 1.5 1.4205 (0.02041) 1.6965 (0.32712) 1.4223 (0.52627) 1.8211 (0.59441) 1.2213 (0.01749)
β = 1.2 1.3246 (0.05230) 1.6139 (0.54912) 1.6080 (1.11703) 1.6155 (0.65038) 1.1230 (0.05067)
θ = 1.25 1.3331 (0.02870) 1.4953 (0.18328) 1.4126 (0.51303) 1.5109 (0.29059) 1.1960 (0.02513)
λ = 0.5 0.4908 (0.00147) 0.4684 (0.01874) 0.5942 (0.29852) 0.4873 (0.09689) 0.4238 (0.00071)
β = 2.5 2.5587 (0.17512) 3.1008 (1.41519) 2.3333 (1.73189) 2.7694 (0.97663) 2.5670 (0.16327)
θ = 0.8 0.8084 (0.00710) 0.9115 (0.04340) 0.9317 (0.14571) 0.9154 (0.05181) 0.7865 (0.00591)
λ = 0.3 0.3009 (0.00048) 0.3104 (0.36087) 0.3183 (0.06067) 0.3284 (1.04234) 0.3421 (0.00029)

MLE = maximum likelihood estimator; LS = least square; WLS = weighted least square; CVM = Crammer-Von Mises.

7. Simulation study

A MCMC simulation study is conducted in this section, to compare the performance of the differ-
ent estimators of the unknown parameters of the TLGLi distribution. This performance is evalu-
ated regarding their mean squared errors (MSEs). Computations in this section are done by ‘Math-
cad program Version 15.0’. We generate 1,000 samples of the TLGLi distribution, where n =
(20, 50, 100, 200) and choosing (β, θ, λ) = (2, 1.5, 0.9), (0.9, 1.25, 2), and (2.5, 0.8, 0.3). The aver-
age values of estimates and MSEs of MLEs, LSEs, WLSEs, CVMEs, and Bayesian estimators are
obtained and reported in Tables 4–7. The Bayesian estimators of the parameters are evaluated with
flexible gamma prior under the SELF by using the MCMC technique. The values of the hyperpa-
rameters are assumed known and chosen in such a way that the prior mean is equal to the true value,
and prior variance is unity. From Tables 4–7, we observe that all the estimates show the property of
consistency, i.e., the MSEs decrease as sample size increase. The MSEs of the Bayesian estimators
are also less when compared to the other estimators; in addition, sometimes the MSEs of the Bayes
and MLEs are very close to each other.

8. Conclusion

This paper introduces a new extension of the Lindley model. The estimation of the parameters is
carried out via different methods. Bayes estimation is computed under gamma informative prior
under the squared error loss function. The performances of the proposed estimation methods are
studied through Monte Carlo simulations. The potentiality of the proposed model is analyzed through
two data sets. A modified goodness-of- fit test using the NRR statistic test is investigated via two
examples. Certain characterizations of the proposed distribution are presented. A modified goodness-
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Table 6: Average values of estimates and mean squared errors for n = 100

Parameters MLE LS WLS CVM Bayesian
β = 2.0 2.2659 (0.09170) 1.7649 (0.17525) 1.8554 (0.79055) 1.8139 (0.17631) 1.9920 (0.08923)
θ = 0.9 1.0084 (0.01832) 0.8492 (0.05150) 0.9972 (0.27431) 0.8493 (0.05137) 0.9321 (0.01652)
λ = 1.5 1.4113 (0.01541) 1.6787 (0.17699) 1.4944 (0.47237) 1.6295 (0.19440) 1.4621 (0.01469)
β = 1.2 1.3222 (0.02832) 1.5396 (0.27328) 1.6031 (0.93027) 1.5404 (0.27639) 1.0951 (0.02343)
θ = 1.25 1.3334 (0.01804) 1.4637 (0.09777) 1.5482 (0.48893) 1.4641 (0.09843) 1.1970 (0.01601)
λ = 0.5 0.4885 (0.00082) 0.4587 (0.00348) 0.5638 (0.27453) 0.4631 (0.01789) 0.4235 (0.00063)
β = 2.5 2.5538 (0.09009) 2.9853 (0.67365) 2.4582 (1.57146) 2.9866 (0.68129) 2.6120 (0.07321)
θ = 0.8 0.8083 (0.00367) 0.8962 (0.02395) 0.9102 (0.10320) 0.8963 (0.02412) 0.7126 (0.00296)
λ = 0.3 0.2997 (0.00024) 0.2826 (0.00084) 0.3148 (0.05267) 0.2826 (0.00084) 0.3712 (0.00018)

MLE = maximum likelihood estimator; LS = least square; WLS = weighted least square; CVM = Crammer-Von Mises.

Table 7: Average values of estimates and mean squared errors for n = 200

Parameters MLE LS WLS CVM Bayesian
β = 2.0 2.0022 (0.02182) 1.7879 (0.10016) 2.1824 (0.61904) 1.7845 (0.09545) 1.8921 (0.00861)
θ = 0.9 1.0113 (0.01584) 0.8332 (0.01154) 0.9739 (0.07393) 0.8316 (0.01086) 0.7829 (0.01329)
λ = 1.5 1.4067 (0.01229) 1.6824 (0.09175) 1.6873 (0.18729) 1.6813 (0.08527) 1.5700 (0.01017)
β = 1.2 1.3189 (0.02400) 1.4896 (0.13249) 1.4998 (0.61342) 1.4914 (0.13387) 1.1921 (0.02091)
θ = 1.25 1.3331 (0.01279) 1.4420 (0.05639) 1.5302 (0.37676) 1.4431 (0.05649) 1.3624 (0.00972)
λ = 0.5 0.4875 (0.00051) 0.4576 (0.00268) 0.4958 (0.07906) 0.4573 (0.00264) 0.3905 (0.00047)
β = 2.5 2.5496 (0.04815) 2.9140 (0.34917) 2.4723 (1.41766) 2.9138 (0.32176) 2.6412 (0.02938)
θ = 0.8 0.8080 (0.00195) 0.8860 (0.08602) 0.9093 (0.08668) 0.8863 (0.01300) 0.9214 (0.00072)
λ = 0.3 0.2991 (0.00012) 0.2819 (0.00059) 0.2911 (0.01006) 0.2819 (0.00057) 0.2764 (0.00011)

MLE = maximum likelihood estimator; LS = least square; WLS = weighted least square; CVM = Crammer-Von Mises.

of-fit test for the new model in complete data case is investigated via two examples. We propose
the construction of a modified chi-squared goodness of fit statistic test for the new TLGLi model in
complete data case. The new test is based on the NRR statistic separately proposed by Nikulin (1973)
and Rao and Robson (1974). As a second step, an application to real data has been proposed to show
the applicability of the proposed test and the new TLGLi model for modeling different data sets.

Appendix: Theorem 1.

Let (Ω,F ,PPP) be a given probability space and let H = [d, e] be an interval for some d < e (d =
−∞, e = ∞ be allowed). Let X : Ω → H be a continuous random variable with the distribution
function F and let q1 and q2 be two real functions defined on H such that

E
[
q2(X)|X ≥ x

]
= E

[
q1(X)|X ≥ x

]
η(X), x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), ξ ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation ηq1 = q2 has no real solution in the interior of H. Then F is uniquely determined by the
functions q1, q2, and η, particularly

F(X) =
∫ x

a
C

∣∣∣∣∣ η′ (u)
η (u) q1 (u) − q2 (u)

∣∣∣∣∣ e−s(u) du,

where the function s is a solution of the differential equation s′ = (η′q1)/(ηq1 − q2) and C is the
normalization constant, such that

∫
H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated moments is
stable in the sense of weak convergence (Glänzel, 1990), in particular, let us assume that there is a



494 Mohamed Ibrahim, Abhimanyu Singh Yadav, Haitham M. Yousof, Hafida Goual, G.G. Hamedani

sequence {Xn} of random variables with distribution functions {Fn} such that the functions q1,n, q2,n,
and ηn(n ∈ N) satisfy the conditions of Theorem 1 and let q1,n → q1, q2,n → q2 for some continuously
differentiable real functions q1 and q2. Let, finally, X be a random variable with distribution F.
Under the condition that q1,n(X) and q2,n(X) are uniformly integrable and the family {Fn} is relatively
compact, the sequence Xn converges to X in distribution only if ηn converges to η, where

η(X) =
E

[
q2(X)|X ≥ x

]
E

[
q1(X)|X ≥ x

] .
This stability theorem makes sure that the convergence of distribution functions is reflected by corre-
sponding convergence of the functions q1, q2, and η, respectively. It guarantees the ‘convergence’ of
characterization of the Wald distribution to that of the Lévy-Smirnov distribution if α → ∞, as was
pointed out in Glänzel and Hamedani (2001).

A further consequence of the stability property of Theorem 1 is the application of this theorem to
special tasks in statistical practice such as the estimation of the parameters of discrete distributions.
For such purpose, the functions q1, q2 and η should be as simple as possible. Since the function triplet
is not uniquely determined it is often possible to choose η as a linear function. Therefore, it is worth
analyzing some special cases which helps to find new characterizations reflecting the relationship
between individual continuous univariate distributions and appropriate in other areas of statistics.

In some cases, one can take q1(X) ≡ 1, as we did in Proposition 3, which reduces the condition of
Theorem 1 to

E
[
q2(X)|X ≥ x

]
= η(X), x ∈ H.

We, however, believe that employing three functions q1 , q2 and η will enhance the domain of appli-
cability of Theorem 1.
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