• Title/Summary/Keyword: square root function

Search Result 246, Processing Time 0.028 seconds

Discrimination of Parkinson's Disease from Essential Tremor using Acceleration based Tremor Analysis (가속도계를 이용한 진전현상의 분석을 통한 파킨슨병과 본태성 진전의 판별)

  • Lee, Hongji;Lee, Woongwoo;Jeon, Hyoseon;Kim, Sangkyong;Kim, Hanbyul;Jeon, Beom S.;Park, Kwangsuk
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.103-108
    • /
    • 2015
  • Discrimination of Parkinson's disease (PD) from Essential tremor (ET) is often misdiagnosed in clinical practice. Since tremor is time-varying signal, and dominant and harmonic frequencies are shown in tremor only with moderate or severe symptom, there are some limitations to use frequency related features. Moreover, patients with PD or ET can suffer from both resting tremor and postural tremor. In this study, 28 patients with PD and 17 patients with ET were enrolled. Tremor was measured with accelerations on the more affected hand during resting and postural conditions. The ratio of root mean square (RMS) of resting tremor to RMS of postural tremor, the mean coefficients of autocorrelation function (ACF), and the mean of differences of two adjacent coefficients of ACF at resting and postural were calculated and compared between PD and ET. The performance showed 98% accuracy with support vector machine and leave-one-out cross validation. In addition, the method accurately differentiated the patients with tremor-dominant PD from patients with ET, with 100% accuracy. Therefore, the developed algorithm can assist clinicians in diagnosing and categorizing patients with tremor, especially, patients with mild symptom or the early stage of a disease, for proper treatment.

Absolute phase identification algorithm in a white light interferometer using a cross-correlation of fringe scans (백색광 간섭기에서 간섭 무늬의 상호 상관관계 함수를 이용한 절대 위상 측정 알고리즘)

  • Kim, Jeong-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.316-326
    • /
    • 2000
  • A new signal processing algorithm for white light interferometry has been proposed and investigated theoretically. The goal of the algorithm is to determine the absolute optical path length of an interferometer with very high precision (<< one optical wavelength). The algorithm features cross-correlation of interferometer fringe scans and hypothesis testing. The hypothesis test looks for a zero order fringe peak candidate about which the cross-correlation is symmetric minimizing the uncertainty of misidentification. The shot noise limited performance of the proposed signal processing algorithm has been analyzed using computer simulations. Simulation results were extrapolated to predict the misidentification rate at Signal to-Shot noise ratio (SNR) higher than 31 dB. Root-mean-square phase error between the computer-generated zero order fringe peak and the estimated zero order fringe peak has been calculated for the changes of three different parameters (SNR, fringe scan sampling rate, coherence length of light source). Results of computer simulations showed the ability of the proposed signal processing algorithm to identify the zero order fringe peak correctly. The proposed signal processing algorithm uses a software approach, which is potentially inexpensive, simple and fast.

  • PDF

Development of Auto-calibration System for Micro-Simulation Model using Aggregated Data (Case Study of Urban Express) (집계자료를 이용한 미시적 시뮬레이션 모형의 자동정산체계 개발 (도시고속도로사례))

  • Lee, Ho-Sang;Lee, Tae-Gyeong;Ma, Guk-Jun;Kim, Yeong-Chan;Won, Je-Mu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.113-123
    • /
    • 2011
  • The application of micro-simulation model has been extended farther with improvement of computer performance and development of complicated model. To make a micro-simulation model accurately replicate field traffic conditions, model calibration is very crucial. Studies on calibration of micro-simulation model have not been enough while lots of studies on calibration of macro-simulation model have been continued in our country. This paper presents an auto-calibration of parameter values in micro-simulation model(VISSIM) using genetic algorithm. RMSE(Root Mean Square Error) of collected volume on the urban expressway versus simulated volume is set as MOP(measure of performance) and objective function of optimization is set as to minimize the RMSE. Applying to urban expressway(Nae-bu circular) as a case study, it shows that RMSE of optimized parameter values decrease 60.4%($19.3{\longrightarrow}7.6$) compared to default parameter values and the proposed auto-calibration system is very effective.

Comparative Analysis of Morphometric Characteristics of Scorpaenidae and Gobioninae

  • Park, In-Seok;Gil, Hyun Woo;Oh, Ji Su;Choi, Hui Jung;Kim, Chi Hong
    • Development and Reproduction
    • /
    • v.19 no.2
    • /
    • pp.85-96
    • /
    • 2015
  • Measurements of closely related sets of classical and truss dimensions were analyzed to discriminate species of scorpaenidae including the dark banded rockfish, Sebastes inermis, the black rockfish, S. schlegeli, and gobioninae including the striped shiner, Pungtungia herzi, and the slender shiner, Pseudopungtungia tenuicorpa. The measurements of the dimensions were arc sin square root transformed, and compared as a function of the standard length of each species for statistical analysis. For values of the classical dimensions of the rockfish, 6 were greater for the dark banded rockfish than for the black rockfish, 1 value was smaller for the former, and for 2 values there was no statistically significant difference (P > 0.05). For values of the classical dimensions of the shiners, 9 values were greater for the striped shiner than for the slender shiner, 2 values were smaller for the former, and for 1 value there was no statistically significant difference (P > 0.01). For values of the truss dimensions of the rockfish, 6 were greater for the dark banded rockfish than for the black rockfish, 1 was smaller for the former, and for 4 values there was no statistically significant difference (P > 0.05). For values of the truss dimensions of the shiners, 13 values were greater for the striped shiner than for the slender shiner, 3 values were smaller for the former, and for 6 values there was no statistically significant difference (P > 0.01). The dimension sets used in this study may be useful as taxonomic indicators for discriminating among fish species in Korea.

Characterization of the Schottky Barrier Height of the Pt/HfO2/p-type Si MIS Capacitor by Internal Photoemission Spectroscopy (내부 광전자방출 분광법을 이용한 Pt/HfO2/p-Si Metal-Insulator-Semiconductor 커패시터의 쇼트키 배리어 분석)

  • Lee, Sang Yeon;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • In this study, we used I-V spectroscopy, photoconductivity (PC) yield and internal photoemission (IPE) yield using IPE spectroscopy to characterize the Schottky barrier heights (SBH) at insulator-semiconductor interfaces of Pt/$HfO_2$/p-type Si metal-insulator-semiconductor (MIS) capacitors. The leakage current characteristics of the MIS capacitor were analyzed according to the J-V and C-V curves. The leakage current behavior of the capacitors, which depends on the applied electric field, can be described using the Poole-Frenkel (P-F) emission, trap assisted tunneling (TAT), and direct tunneling (DT) models. The leakage current transport mechanism is controlled by the trap level energy depth of $HfO_2$. In order to further study the SBH and the electronic tunneling mechanism, the internal photoemission (IPE) yield was measured and analyzed. We obtained the SBH values of the Pt/$HfO_2$/p-type Si for use in Fowler plots in the square and cubic root IPE yield spectra curves. At the Pt/$HfO_2$/p-type Si interface, the SBH difference, which depends on the electrical potential, is related to (1) the work function (WF) difference and between the Pt and p-type Si and (2) the sub-gap defect state features (density and energy) in the given dielectric.

Reynolds Number Effects on the Non-Nulling Calibration of a Cone-Type Five-Hole Probe for Turbomachinery Applications

  • Lee, Sang-Woo;Jun, Sang-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1632-1648
    • /
    • 2005
  • The effects of Reynolds number on the non-nulling calibration of a typical cone-type five-hole probe have been investigated for the representative Reynolds numbers in turbomachinery. The pitch and yaw angles are changed from - 35 degrees to 35 degrees with an angle interval of 5 degrees at six probe Reynolds numbers in range between $6.60{\times}10^3\;and\;3.17{\times}10^4$. The result shows that not only each calibration coefficient itself but also its Reynolds number dependency is affected significantly by the pitch and yaw angles. The Reynolds-number effects on the pitch- and yaw-angle coefficients are noticeable when the absolute values of the pitch and yaw angles are smaller than 20 degrees. The static-pressure coefficient is sensitive to the Reynolds number nearly all over the pitch- and yaw-angle range. The Reynolds-number effect on the total-pressure coefficient is found remarkable when the absolute values of the pitch and yaw angles are larger than 20 degrees. Through a typical non-nulling reduction procedure, actual reduced values of the pitch and yaw angles, static and total pressures, and velocity magnitude at each Reynolds number are obtained by employing the calibration coefficients at the highest Reynolds number ($Re=3.17{\times}10^4$) as input reference calibration data. As a result, it is found that each reduced value has its own unique trend depending on the pitch and yaw angles. Its general tendency is related closely to the variation of the corresponding calibration coefficient with the Reynolds number. Among the reduced values, the reduced total pressure suffers the most considerable deviation from the measured one and its dependency upon the pitch and yaw angles is most noticeable. In this study, the root-mean-square data as well as the upper and lower bounds of the reduced values are reported as a function of the Reynolds number. These data would be very useful in the estimation of the Reynolds-number effects on the non-nulling calibration.

Development of the Wind Wave Damage Estimation Functions based on Annual Disaster Reports : Focused on the Western Coastal Zone (재해연보기반 풍랑피해예측함수 개발 : 서해연안지역)

  • Choo, Tai-Ho;Cho, Hyoun-Min;Shim, Sang-Bo;Park, Sang-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.154-163
    • /
    • 2018
  • Not only South Korea but also Global world show that the frequency and damages of large-scale natural disaster due to the rise of heavy rain event and typhoon or hurricane intensity are increasing. Natural disasters such as typhoon, flood, heavy rain, strong wind, wind wave, tidal wave, tide, heavy snow, drought, earthquake, yellow dust and so on, are difficult to estimate the scale of damage and spot. Also, there are many difficulties to take action because natural disasters don't appear precursor phenomena However, if scale of damage can be estimated, damages would be mitigated through the initial damage action. In the present study, therefore, wind wave damage estimation functions for the western coastal zone are developed based on annual disaster reports which were published by the Ministry of Public Safety and Security. The wind wave damage estimation functions were distinguished by regional groups and facilities and NRMSE (Normalized Root Mean Square Error) was analyzed from 1.94% to 26.07%. The damage could be mitigated if scale of damage can be estimated through developed functions and the proper response is taken.

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

A Study on the Data Compression of the Voice Signal using Multi Wavelet (다중 웨이브렛을 이용한 음성신호 데이터 압축에 관한 연구)

  • Kim, Tae-Hyung;Park, Jae-Woo;Yoon, Dong-Han;Noh, Seok-Ho;Cho, Ig-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.625-629
    • /
    • 2005
  • According to the rapid development of the information and communication technology, the demand on the efficient compression technology for the multimedia data is increased magnificently. In this Paper, we designed new compression algorithm structure using wavelet base for the compression of ECG signal and audible signal data. We examined the efficiency of the compression between 2-band structure and wavelet packet structure, and investigated the efficiency and reconstruction error by wavelet base function using Daubechies wavelet coefficient and Coiflet coefficient for each structure. Finally, data were compressed further more using Huffman code, and resultant Compression Rate(CR) and Percent Root Mean Square difference(PRD) were compared with those of existent DCT.

  • PDF

The Properties of $Bi_2Mg_{2/3}Nb_{4/3}O_7$ Thin Films Deposited on Copper Clad Laminates For Embedded Capacitor (임베디드 커패시터의 응용을 위해 CCL 기판 위에 평가된 BMN 박막의 특성)

  • Kim, Hae-Won;Ahn, Jun-Ku;Ahn, Kyeong-Chan;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.45-45
    • /
    • 2007
  • Capacitors among the embedded passive components are most widely studied because they are the major components in terms of size and number and hard to embed compared with resistors and inductors due to the more complicated structure. To fabricate a capacitor-embedded PCB for in-line process, it is essential to adopt a low temperature process (<$200^{\circ}C$). However, high dielectric materials such as ferroelectrics show a low permittivity and a high dielectric loss when they are processed at low temperatures. To solve these contradicting problems, we studied BMN materials as a candidate for dielectric capacitors. processed at PCB-compatible temperatures. The morphologies of BMN thin films were investigated by AFM and SEM equipment. The electric properties (C-F, I-V) of Pt/BMN/Cu/polymer were evaluated using an impedance analysis (HP 4194A) and semiconductor parameter analyzer (HP4156A). $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMN) thin films deposited on copper clad laminate substrates by sputtering system as a function of Ar/$O_2$ flow rate at room temperature showed smooth surface morphologies having root mean square roughness of approximately 5.0 nm. 200-nm-thick films deposited at RT exhibit a dielectric constant of 40, a capacitance density of approximately $150\;nF/cm^2$, and breakdown voltage above 6 V. The crystallinity of the BMN thin films was studied by TEM and XRD. BMN thin film capacitors are expected to be promising candidates as embedded capacitors for printed circuit board (PCB).

  • PDF