• Title/Summary/Keyword: square method

Search Result 5,215, Processing Time 0.032 seconds

Least Square Channel Estimation Scheme of OFDM System using Fuzzy Inference Method (퍼지 추론법을 적용한 OFDM 시스템의 LS(Least Square) 채널추정 기법)

  • Kim, Nam;Choi, Jung-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.84-90
    • /
    • 2009
  • In this paper, the new channel estimation was proposed that have the low complexity and high performance using Fuzzy inference method uses recently from various field for estimation about uncertainty in channel estimation of OFDM. Proposed method is channel estimation performance improve, calculation and interpolation for statistics character of channel using the pilot before LS channel estimation by Fuzzy inference method. Simulation result in QPSK proposed channel estimation method shows the enhancement of 5.5dB compared to the LS channel estimation and the deterioration of 1.3dB compared to the MMSE channel estimation in mean square error point $10^{-3}$. symbol error rate shows similarity performance the MMSE $10^{-1.96}$, proposed channel estimation $10^{-1.93}$ and enhancement of $10^{-0.35}$ compared to the LS channel estimation in signal to noise ratio point 20dB.

A Recursive Data Least Square Algorithm and Its Channel Equalization Application

  • Lim, Jun-Seok;Kim, Jae-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.43-48
    • /
    • 2006
  • Abstract-Using the recursive generalized eigendecomposition method, we develop a recursive form solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. Simulations demonstrate that DLS outperforms ordinary least square for certain types of deconvolution problems.

Robust Modal Parameter Idnentification Using Total Least Square Method (전최소자승법을 이용한 강인한 모드매개변수)

  • Jeong, Weui-Bong;Kim, Jun-Yeop;Kim, Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.843-849
    • /
    • 1996
  • The least square estimation is used frequently in experimental modal analysis techinque to eliminate noise signals. However, identified modal parameters are sometimes inaccurate, since the least squre estimation is sensitive to noise. In this paper, a new total least squre estimation, which is robust to noise signals, is developed and applied to experimental modal analysis technique such as Prony method and Circle Fit method. Several simulated results show that the proposed method is robuster to noise than conventional method.

Computation of Unsteady Separated Flow Using the Vortex Particle Method (I) - Boundary Element Method and Vortex Strength Around the Square Cylinder - (와류입자법에 의한 비정상 박리흐름의 전산(I) -경계요소법과 정방형 실린더 주위의 와류강도-)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.3-8
    • /
    • 1998
  • The vortex particle method, which includes viscous effects, consists of diffusion of boundary vorticity and creation of the vortex particles, convection, particle strength exchange, and particle redistribution. Accuracy of the boundary element method is very important since it creates the particles around the body at every time step. A boundary element method based on source panel was investigated as part of computation of unsteady separated flows by rising the vortex particle method. The potential flows were computed around a circular cylinder and a square cylinder. The results around the circular cylinder were compared with the exact solution, and the distribution of vorticity, in particular near the sharp comers of the square cylinder, is scrutinized for different number of panels.

  • PDF

Calculation of the Dipole Moments for Transition Metal Complexes by the Valence Bond Method (Ⅱ). Calculation of the Dipole Moments for Square Planar and Tetrahedral [M (Ⅱ) $N_2Se_2$] Type Complexes [M (Ⅱ) = Co (Ⅱ), Ni (Ⅱ) or Zn (Ⅱ)]

  • Ahn, Sang-Woon;Park, Eu-Suh;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.79-82
    • /
    • 1981
  • A calculation method of the dipole moments for square planar and tetrahedral complexes by the valence bond method has been developed and an example calculation was carried out choosing the square planar and tetrahedral $[M(Ⅱ)N_2Se_2]$ type complexes. The calculated values of the dipole moments by the valence bond method are higher than those of the approximate orbital method. We found that we may predict the geometric structure of the transition metal complexes comparing the calculated values of the dipole moments with the experimental values. A new method for definition of C' parameter has also developed on the basis of extended Huckel theory.

Accuracy Comparisons between Traditional Adjustment and Least Square Method (최소제곱법을 적용한 지적도근점측량 계산의 정확도 분석)

  • Lee, Jong-Min;Jung, Wan-Suk;Lee, Sa-Hyung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.117-130
    • /
    • 2015
  • A least squares method for adjusting the horizontal network satisfies the conditions which is minimizing the sum of the squares of errors based on probability theory. This research compared accuracy of 3rd cadastral control points adjusted by traditional and least square method with respect to the result of Network-RTK. Test results showed the least square method more evenly distribute closure error than traditional method. Mean errors of least square and traditional adjusting method are 2.7cm, 2.2cm respectively. In addition, blunder in angle observations can be detected by comparing position errors which calculated by forward and backward initial coordinates. However, distance blunder cannot offer specific observation line occurred mistake because distance error propagates several observation lines which have similar directions.

Chlorophyll-a Forcasting using PLS Based c-Fuzzy Model Tree (PLS기반 c-퍼지 모델트리를 이용한 클로로필-a 농도 예측)

  • Lee, Dae-Jong;Park, Sang-Young;Jung, Nahm-Chung;Lee, Hye-Keun;Park, Jin-Il;Chun, Meung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.777-784
    • /
    • 2006
  • This paper proposes a c-fuzzy model tree using partial least square method to predict the Chlorophyll-a concentration in each zone. First, cluster centers are calculated by fuzzy clustering method using all input and output attributes. And then, each internal node is produced according to fuzzy membership values between centers and input attributes. Linear models are constructed by partial least square method considering input-output pairs remained in each internal node. The expansion of internal node is determined by comparing errors calculated in parent node with ones in child node, respectively. On the other hands, prediction is performed with a linear model haying the highest fuzzy membership value between input attributes and cluster centers in leaf nodes. To show the effectiveness of the proposed method, we have applied our method to water quality data set measured at several stations. Under various experiments, our proposed method shows better performance than conventional least square based model tree method.

Formulation of the Panel Method with Linearly Distributed Dipole Strength on Triangular Panels (삼각형 패널 상에 선형적으로 분포된 다이폴 강도를 갖는 패널법의 정식화)

  • Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.114-123
    • /
    • 2020
  • A high-order potential-based panel method based on Green's theorem, with piecewise-linear dipole strength on triangular panels, is formulated for the analysis of potential flow around a three-dimensional wing. Previous low-order panel methods adopt square panels with piecewise-constant dipole strength, which results in inherent errors. Square panels can not represent a high curvature lifting body, such as propellers, since the four vertices of the square panel do not locate at the same flat plane. Moreover the piecewise-constant dipole strength induces inevitable errors due to the steps in dipole strength between adjacent panels. In this paper a high-order panel method is formulated to improve accuracy by adopting a piecewise linear dipole strength on triangular panels. Firstly, the square panels are replaced by triangular panels in order to increase the geometric accuracy in representing the shape of the object with large curvature. Next, the step difference of the dipole strength between adjacent panels is removed by adopting piecewise-linear dipole strength on the triangular panels. The calculated results by the present method is compared with analytical ones for simple non-lifting geometries, such as ellipsoid. The results for an elliptic wing with zero thickness at finite angle of attack are compared with Jordan's results. The comparison shows reasonable agrements for the both lifting and non-lifting bodies.

Signal Estimation Using Covariance Matrix of Mutual Coupling and Mean Square Error

  • Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.691-696
    • /
    • 2018
  • We propose an algorithm to update weight to use the mean square error method and mutual coupling matrix in a coherent channel. The algorithm proposed in this paper estimates the desired signal by using the updated weight. The updated weight is obtained by covariance matrix using mean square error and mutual coupling matrix. The MUSIC algorithm, which is direction of arrival estimation method, is mostly used in the desired signal estimation. The MUSIC algorithm has a good resolution because it uses subspace techniques. The proposed method estimates the desired signal by updating the weights using the mutual coupling matrix and mean square error method. Through simulation, we analyze the performance by comparing the classical MUSIC and the proposed algorithm in a coherent channel. In this case of the coherent channel for estimating at the three targets (-10o, 0o, 10o), the proposed algorithm estimates all the three targets (-10o, 0o, 10o). But the classical MUSIC algorithm estimates only one target (x, x, 10o). The simulation results indicate that the proposed method is superior to the classical MUSIC algorithm for desired signal estimation.

Propagation Factor Based Elevation Estimation Algorithm Selection Method in Multipath Situation (다중경로 상황에서의 전파 인자 기반 고각 추정 알고리즘 선택기법)

  • Daihyun Kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.172-177
    • /
    • 2024
  • This paper presents a method to overcome the problem of increasing elevation estimation error when estimating elevation in a multipath situation with radar. A multipath situation means that radar reception signals reflected from the same target come from multiple paths. In non-multipath, the monopulse method is accurate. For the opposite case, the least square error method is accurate. In multipath situation and when the elevation angle is very low, a singular occurs where the least square error estimate diverges. This singular was identified based on the propagation factor, and monopulse and least square error estimation methods were selectively used. As a result, we succeeded in increasing the accuracy of elevation estimation. MATLAB simulations were performed to verify the method proposed in this paper.