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Abstract

Abstract-Using the recursive generalized eigendecomposition method, we develop a recursive form solution to the data 
least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. Simulations demonstrate that 
DLS outperforms ordinary least square for certain types of deconvolution problems.

Keywords^ Data least square method, Generalized eigenvalue problem, Equalization.

I. Introduction

Linear least squares (LS) problems involve finding "good" 
approximate solutions to a set of independent, but inconsistent, 
linear equations

A x = b, (1)

where A is an m x n complex data matrix; b is a complex m 
x 1 observation vector; and x is a complex n x 1 prediction 
vector, which is optimally chosen to minimize some kind of 
squared error measure. It is usually assumed that the underlying 

noiseless data satisfy (1) with equality. Different classes of LS 
problems can be defined in tenns of the type of perturbation 

necessary to achieve equality in the system of equations 
described by (1). For example, in the ordinary least squares 
(OLS) problem, the error (or perturbation) is assumed to lie in b.

Axols = (b + r), (2)

where r is the residual error vector that corresponds to a
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perturbation in b. The OLS solution vector xols is chosen so that 
the Euclidean (or Frobenius) norm of r is minimized. It is 
implicitly assumed in the OLS problem that A is completely 
errorless, and therefore the columns of A are not perturbed in the 
solution [1]. On the other hand, the total least squares (TLS) 
problem assumes error in both A and b.

(A + E )xtls 그 (b + r). (3)

The TLS solution vector is chosen so that the Euclidean norm 
of [E r] is minimal. Another interesting case that is described and 

solved in this correspondence assumes that errors occur in A but 
not b. We call this case the data least squares (DLS) problem 
because the error is assumed to lie in the data matrix A as 
indicated by

(A + E)xDls = b. (4)

DeGroat, et. al. in [2] developed a close form solution to (4) 
and demonstrated that it outperformed OLS and TLS in case of 
noisy data matrix. However, the solution was a kind of batch 
type algorithm.

In this paper, we develop a recursive form of DLS solution 
based on the recursive generalized eigendecomposition method, 
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which was proposed by Y. N. Rao and J. C. Principe in [3], The 
usefulness of the DLS method is then demonstrated with 
simulations of channel equalization.

Notice that the input noise may originate from the measured 
error, interference, quantized noise and so on. Hence, we adopt a 
more general signal model than the least squares based 
estimation. Moreover, the augmented data vector is defined as

II. Generalized Total Least Square Problem x(n) = [xr(n),J(n)]r eC(N+1)xl
(9)

Given an unknown system with finite impulse response and 
assuming that both the input and output are corrupted by the 
Gaussian white noise, the system should be estimated from the 

noisy observation of the input and output, as Fig.l. The unknown 
system is described by

h = 0两,…，必匕V (5)

where h may be time varying or time invariant. The output 
is given by

J(n) = xH(n)h+n0 (n), (6)

where the output noise n0(ri) is a Gaussian white noise with 

variance and independent of the input signal, and the noise 

free input vector is represented as

x(n) = [x(n), x(nl)]r. (7)

The noisy input vector of the system is given by

x(n) = x(n) + n( (n)e CNxl, ⑻

where (n)- lnini (n -1), + l)]r and the
2 

noise ni(n) is the Gaussian white noise with variance j .

input

The correlation matrix of the augmented data vector has the 

following structure

R = R P
.P" C. (1 이

where p = and
c = E{d(n)d *(")}, R = fi(x(n)x H (n)) = R + cr,2!; R = e{x(m)x%)}. 

We can further establish that p = R"h and c = hHRh+aJ.

Define the constrained Rayleigh quotient as

[wVi]R[«<-ir
[wr-l]D[wT,-l]H , (11)

5Ji ol 으】
where yj with f a： [4]. The generalized total least 

square solution is obtained by solving

1哪 J(w). (12)

DLS is a special case in (11) with V ) [4].

III. Generalized Eigendecomposition

From a mathematical perspective, generalized 

eigendecomposition (GED) involves solving the matrix equation 
RiW그 R提Va, where R1,R2 are square matrices, w is the 

generalized eigenvector matrix and A is the diagonal generalized 
eigenvalue matrix[5]. These are typically the full covariance 
matrices of zero mean stationary random signals xi(n) and X2(n) 
respectively. For complex symmetric and positive definite 
matrices, all the generalized eigenvectors are complex and the 
corresponding generalized eigenvalues are positive. The 
generalized eigenvectors act as filters in the joint space of the 
two signals xi(n) and X2(n), minimizing the energy of one of the 
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signals and maximizing the energy of the other at the same time. 
This property has been successfully applied to deriving a 
recursive algorithm [3]. The recursive algorithm has been based 
on the fact that any generalized eigenvector w that is a column 
of the matrix w is a stationary point of the function,

丿顷）=
WRi希 
whR2w . (13)

This is because

(wHR]W^ ~ w 〜
V讦丿(w)느 V』~hc ~ ~ R?w\whR2w J whR2w (14)

This is nothing but the generalized eigenvalue equation and the 
generalized eigenvalues are the values of (13) evaluated at the 

stationary points. Rao, et. al. in[3] stated that the solution of (14) 

was the generalized eigenvector corresponding to the largest 
generalized eigenvalue so called the principal generalized 

eigenvector. The GED equation can be rewritten as,

R W = W^1W R2w
1 whR2w 2 (15)

Left multiplying (15) by R； and rearranging the terms, we get,

WHR!W 2 1 (16)

Equation (16) is the basis of our iterative algorithm. Let the 
weight vector w(n-l) at iteration (n 1) be the estimate of the 
principal generalized eigenvector. Then, the estimate of the new 
weight vector at iteration n according to (16) is,

w(n)= 希"— 1)R?(")祈(W — 1) R-i 
诵 ” (以一 1)R[ (끼标 (〃 一 1) 2

(n)Rt(n)w(n-l)
(17)

where RQ) = RiST) + xQ)x7(?d and

R2(n) = R2(n~l)+ x2(n)X2 (n)

If we can observe that (16) and (17) track the GED equation at 
every time step, it is analogous to the RLS update rule that 
tracks the Wiener solution with every update[6]. As the update in 

[6], we need a matrix inversion operation for each update.

Application of the Sherman Morrison Woodbury matrix 

inversion lemma in [5],

(A + BC) 1 = A-1 - A 니 B(I + CA^B)T CA 시 (18)

to the R?%” in (17) is straightforward and we obtain

R?3)』R心-1)-业邛业籍也业二丁
L 1+X；(")R?(A/ — 1)X2(" J (19)

Let define 力(门) = 끼 and y2(n) = (w- 1)x2(m) as

the outputs for signals xl(n) and x2(n) respectively, where the 
vectors xl(n) and x2(n) are built using the delayed versions of 
the signals xl(n) and x2(n). With this definition, we have

补(&-i)rq)丽-i)=力光(那
(=1 \^J)

希％ - 1)I& (n)w(n -1) = Xl^2(0|2 f、
(=i (시丿

This is true in the stationary cases when sample variance 

estimators can be used instead of the expectation operators. 
However, for non stationary signals, a simple forgetting factor 

can be included with a trivial change in the update equation. 
With these simplifications, we can write the modified update 
equation for the stationary case as,

w(n) = -츠---- R； (n)£ x, (i 加 (i)
,=i

1=1 (22)
肉 (矽 = 希H(j_i)"), / = 1,2 '乙시

where is estimated by using (19).

IV. Recursive Data Least Square Algorithm

We can apply the generalized eigendecomposition method in 
section III to solution of DLS. If we modify (11) and (12), the 
object function for DLS becomes as follows.

j whDw _ [ww,-l]D[wr,-l]r
W ~ w H Rw - [ w wl]R[w T -1]T , (23)
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The DSL solution can be derive as (24). We apply the 
recursive algorithm in section III for the maximization of (24).

吧and then w = W(l:N)/(-W(N + l)), (24)

where w(l ： N) is a vector with the elements from the 1 st to 
the N th, and w(7V + l) is the (N+l) th element in w. When 
we apply the generalized eigendecomposition to (23), we have 
two simplified equations for (20) and (22), respectively. (20) 

becomes as follows.

wH(n- 1)R】 (n)w(n-1) = l)D(n)w(n-1) = wff(n-l)w(n -1) (25)

And (22) also becomes as follows.

力 y(이2 _
w(n) = ------------------------------------------ y(0 = wH(z-l)x(i) 仁治)

w (n-l)w(n-l) 1세〃

In DLS, the element in (N+l,N+l) becomes null. However, 

D is not inverted and the null element makes the denominator 

in (26) the energy of vector, w, so that the null element does not 
cause any numerical instability.

We summarize the algorithm in table 1.

Table 1. Recursive Data Least Square (RDLS) Algorithm.

1. Initialize x(0) = [xT(0), rf(0)]t w(0) = [wT(0), -1]
with the w(0) e CNx1 to a random vector

2, Fill the matrix Q(0) e CNxN with small random values
3. Initialize scalar variables C(0) to zero For j > 0
4. Compute Xj) = wh(j-1)x(j)
5. Update Q as

QW =
• 으K쯔里也으堕二스

l+xH(n)Q(n-l)x(n)

6. Update C as。(丿)=°(丿一1) + |)，。)『

7. Update the weight vector as
w(j) = [C(J)/(wH (j - l)w(j - l))]Q(j)B 유仃 -1)

8. Normalize the weight vector
9. w(j) = w(l: n-1)/(-w(n +1)) loop 

channel equalization problem is graphically described by the 
block diagram in Fig. 2. Basically, the solution vector, w = [wl, 
w2, . . . , wp]T represents an FIR approximant inverse filter to 
the channel characteristic H(z). The output of the inverse 
(equalization) filter can be written in matrix fom using the 
output of the channel as input to the finite impulse response 
(FIR) equalization filter. The output of the equalized channel 
should be approximately equal to the original input

=
-V2

vo ~

卩1 的

由

&

為〔 _vw-l * *, VN-p+l VN-P_
(27)

where p is the FIR filter order; and N is the total number of 
output samples. In this problem, we assume that the left side in 

(27) is known without error because the input training signal is 
assumed to be known without error. It is easy to see that (27) 

has the form of (4).
For the simulation, a well known complex nonminimum 

phase channel model introduced by Cha and Kassam [9] is used 
to evaluate the proposed recursive data least square (RDLS) 
equalizer performance for 4 PAM signaling. Although the 

length of the channel is short, the channel model cannot。끼y 
simulate the phase change from boundary reflection but also do 
the nonminimum phase characteristics of the channel in the room 
acoustics or in the underwater communication. The channel 
output v(n) (which is also the input of the equalizer) is given by

v(n) = (0.34 - J0.27)s(m)+ (0.87 + ;0.43)5(n-l)
+ (0.34- jO.21)Xn-2) + 7(n), 7f(n) ~ N(0,0.01) (28)

Where N(0, 0.01) means the white Gaussian noise (of the 

nonminimum-phase channel) with mean 0 and variance 0.01. 
4-PAM symbol sequence s(n) is passed through the channel and 

the sequence s(n) are valued from the set {±1, ±3}. All the 
equalizers, the recursive least square (RLS) based equalizer and 

V. A Channel Equalization Application

In this section, we demonstrate the usefulness of the DLS 
method by comparing it with the optimal method and OLS 
methods when applied to a channel equalization problem. The

(a) (b)
Fig. 2. Transmission and E디ualization mod이: (a) received signal model, (b) 

equalizer model (s[n]:transmitted signal, h[n]: channel model, q [n]: 
additive noise, v[n]:received signal, d[n]:training signal).
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the RDLS based equalizer, are trained with 1000 data symbols at 
16 dB SNR. The RLS is a recursive algorithm for the OLS 

problem. The order of equalizer is set to 9.
Fig. 3 (a) shows the distribution of the input data of the 

different equalizers. This figure shows received signals scattered 
severely due to transmission channel effect. Fig. 3 (b), (c) and 

(d) show the scatter diagrams of the outputs of the three 
equalizers, optimal, RLS and RDLS, respectively. As observed 

from Fig. 3, the equalized signal by the proposed algorithm 
centres on (±1, ±3} and it is almost the same as the equalized 

signals by the optimal equalizer which is derived from the 
Wiener solution. It leads the conclusion that the proposed RDLS 

outperforms the RLS algorithm. Moreover, it estimates almost the 

same as optimal equalizer.

Fig. 3. Performance comparison of three eq니alizers: (a) scatter diagram of 
received signals, (b) scatter diagram of optimal equalizer, (c) scatter 
diagram of RLS equalizer, (d) scatter diagram of the proposed 
equalizer.

Fig. 4. Convergence comparison: (a) RLS e이ualizer, (b) the proposed 
equalizer.

Fig. 4 compares the proposed algorithm with the RLS in 

respect of the convergence. Fig. 4 shows that the proposed 
algorithm converges almost the same as RLS. Fig. 4 (c) and (d) 

provide more better comparison for convergence. Furthermore, 
the proposed algorithm shows less fluctuation that RLS. That can 
explain the results in Fig. 3 (c) and in Fig. 3 (d). RLS based 
equalizer can equalize almost the same as the optimal equalizer 
in Fig. 3 (b) but some samples are severely scattered far from the 
symbol centres on (±1, ±3}. It frequently happens in the 
nonminimum channel. On the contrary, the proposed algorithm 
concentrates the output symbols on the symbol centres, (±1, ±3).

VI. Conclusion

In this paper, we proposed a recursive algorithm for data least 
square (DLS) solution. Channel equalization simulations were 

performed to compare the proposed algorithm with the algorithms 
in OLS and we found better performance over OLS methods.
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