• Title/Summary/Keyword: sputtering gas pressure

Search Result 320, Processing Time 0.026 seconds

An optimized condition for corrosion protection of Type 304 Films prepared by unbalanced magnetron sputtering in 3.5% NaCl solution

  • Yoo, Ji-Hong;Ahn, Seung-Ho;Kim, Jung-Gu;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.465-474
    • /
    • 2001
  • Type 304SS coatings were performed at 200$\square$ onto AISI 1045 carbon steel substrate using unbalanced magnetron sputtering (UBMS) with an austenitic AISI 304 stainless steel (SS) target of 100mm diameter. The total deposition pressure in the active Ar gas was 2$\times$10$^{-3}$ Torr. Coatings were done at various target power densities and bias voltages. Chemical compositions of metallic elements of the coatings were measured by energy dispersive X-rays spectroscopy (EDS). The structure and the morphology of Type 304SS coatings were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Corrosion properties of the coated specimens were examined using electrochemical polarization measurements and electrochemical impedance spectroscopy in a deaerated 3.5% NaCl solution. The porosity rate was obtained from a comparison of the dc polarization resistance of the uncoated and coated substrates. Scratch adhesion testing was used to compare the critical loads for different coatings. XRD results showed that the sputtered films exhibit a ferritic b.c.c. $\alpha$-phase. Potentiodynamic polarization curves indicated that all samples had much higher corrosion potential and better corrosion resistance than the bare steel substrate. The corrosion performance increased with increasing power density and the adhesion was enhanced at the bias voltage of -50V. An improvement in the corrosion resistance can be obtained with a better coating adhesion. Finally, an optimized deposition condition for corrosion protection was found as $40W/cm^2$ and -50V.

  • PDF

Change in the Energy Band Gap and Transmittance IGZO, ZnO, AZO OMO Structure According to Ag Thickness (IGZO, ZnO, AZO OMO 구조의 Ag두께 변화에 따른 투과율과 에너지 밴드 갭의 변화)

  • Lee, Seung-Min;Kim, Hong-Bae;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.185-190
    • /
    • 2015
  • In this study, we fabricated the indium gallium zinc oxide (IGZO), zinc oxide (ZnO), aluminum zinc oxide (AZO). oxide and silver are deposited by magnetron sputtering and thermal evaporator, respectively transparency and energy bandgap were changed by the thickness of silver layer. To fabricate metal oxide metal (OMO) structure, IGZO sputtered on a corning 1,737 glass substrate was used as bottom oxide material and then silver was evaporated on the IGZO layer, finally IGZO was sputtered on the silver layer we get the final OMO structure. The radio-frequency power of the target was fixed at 30 W. The chamber pressure was set to $6.0{\times}10^{-3}$ Torr, and the gas ratio of Ar was fixed at 25 sccm. The silver thickness are varied from 3 to 15 nm. The OMO thin films was analyzed using XRD. XRD shows broad peak which clearly indicates amorphous phase. ZnO, AZO, OMO show the peak [002] direction at $34^{\circ}$. This indicate that ZnO, AZO OMO structure show the crystalline peak. Average transmittance of visible region was over 75%, while that of infrared region was under 20%. Energy band gap of OMO layer was increased with increasing thickness of Ag layer. As a result total transmittance was decreased.

Transparent Oxide Thin Film Transistors with Transparent ZTO Channel and ZTO/Ag/ZTO Source/Drain Electrodes

  • Choi, Yoon-Young;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.127-127
    • /
    • 2011
  • We investigate the transparent TFTs using a transparent ZnSnO3 (ZTO)/Ag/ZTO multilayer electrode as S/D electrodes with low resistivity of $3.24{\times}10^{-5}$ ohm-cm, and high transparency of 86.29% in ZTO based TFTs. The Transparent TFTs (TTFTs) are prepared on glass substrate coated 100 nm of ITO thin film. On atomic layer deposited $Al_2\;O_3$, 50 nm ZTO layer is deposited by RF magnetron sputtering through a shadow mask for channel layer using ZTO target with 1 : 1 molar ratio of ZnO : $SnO_2$. The power of 100W, the working pressure of 2mTorr, and the gas flow of Ar 20 sccm during the ZTO deposition. After channel layer deposition, a ZTO (35 nm)/Ag (12 nm)/ZTO(35 nm) multilayer is deposited by DC/RF magnetron sputtering to form transparent S/D electrodes which are patterned through the shadow mask. Devices are annealed in air at 300$^{\circ}C$ for 30 min following ZTO deposition. Using UV/Visible spectrometer, the optical transmittances of the TTFT using ZTO/Ag/ ZTO multilayer electrodes are compared with TFT using Mo electrode. The structural properties of ZTO based TTFT with ZTO/Ag/ZTO multilayer electrodes are analyzed by high resolution transmission electron microscopy (HREM) and X-ray photoelectron spectroscopy (XPS). The transfer and output characterization of ZTO TTFTs are examined by a customized probe station with HP4145B system in are.

  • PDF

Effects of Se/(S+Se) Ratio on Cu2ZnSn(SxSe1-x)4 (CZTSSe) Thin Film Solar Cells Fabricated by Sputtering

  • Park, Ju Young;Hong, Chang Woo;Moon, Jong Ha;Gwak, Ji Hye;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.75-79
    • /
    • 2015
  • Recently, $Cu_2ZnSn(S_xSe_{1-x})_4$ (CZTSSe) has been received a tremendous attraction as light absorber material in thin film solar cells (TFSCs), because of its earth abundance, inexpensive and non-toxic constituents and versatile material characteristics. Kesterite CZTSSe thin films were synthesized by sulfo-selenization of sputtered Cu/Sn/Zn stacked metallic precursors. The sulfo-selenization of Cu/Sn/Zn stacked metallic precursor thin films has been carried out in a graphite box using rapid thermal annealing (RTA) technique. Annealing process was done under sulfur and selenium vapor pressure using Ar gas at $520^{\circ}C$ for 10 min. The effect of tuning Se/(S+Se) precursor composition ratio on the properties of CZTSSe films has been investigated. The XRD, Raman, FE-SEM and XRF results indicate that the properties of sulfo-selenized CZTSSe thin films strongly depends on the Se/(S+Se) composition ratio. In particular, the CZTSSe TFSCs with Se/(S+Se) = 0.37 exhibits the best power conversion efficiency of 4.83% with $V_{oc}$ of 467 mV, $J_{sc}$ of $18.962mA/cm^2$ and FF of 54%. The systematic changes observed with increasing Se/(S+Se) ratio have been discussed in detail.

Magnetic Properties of Fe-Zr-N Soft Magnetic Thin Films (Fe-Zr-N 연자성 박막의 자기적 성질)

  • 김택수;김종오;이중환;윤선진;김좌연
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.317-322
    • /
    • 1996
  • Thin films of Fe-Zr-N were fabricated by rf magnetron reactive sputtering method. The saturation magnetization and coercivity as functions of annealing temperature and partial pressure of nitrogen gas, effective permeability at high frequencies, and thermal stability were investigated. Magnetic softness was exhibited in the composition range of $Fe_{72-78}Zr_{7-10}N_{15-18}$ which was boundary between polycrystalline and amorphous structure. These films exhibited magnetic softness with saturation magentic flux density of 1.55 T and effective permeability of about 3000 at 1 MHz. These films also exhibited thermal stability by sustaining effective permeability of 2500 or above as the temperature was raised to $550^{\circ}C$. It is asswned that good magnetic softness is obtained because grain growth of $\alpha-Fe$ is prohibited due to the precipitation of ZrN nanocrystals. The grain sizes of $\alpha-Fe$ films were $40~50\AA$ and the grain sizes of ZrN nanocrystals were $10~15\AA$.

  • PDF

Effect of Moisture in a Vacuum Chamber on the Deposition of c-BN Thin Film using an Unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링 방법에 의한 질화붕소막의 증착시 반응실내의 초기 수분이 입방정질화붕소 박막의 형성에 미치는 영향)

  • Lee, Eun-Sook;Park, Jong-Keuk;Lee, Wook-Seong;Seong, Tae-Yeon;Baik, Young-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.620-624
    • /
    • 2012
  • The role of moisture remaining inside the deposition chamber during the formation of the cubic boron nitride (c-BN) phase in BN film was investigated. BN films were deposited by an unbalanced magnetron sputtering (UBM) method. Single-crystal (001) Si wafers were used as substrates. A hexagonal boron nitride (h-BN) target was used as a sputter target which was connected to a 13.56 MHz radiofrequency electric power source at 400 W. The substrate was biased at -60 V using a 200 kHz high-frequency power supply. The deposition pressure was 0.27 Pa with a flow of Ar 18 sccm - $N_2$ 2 sccm mixed gas. The inside of the deposition chamber was maintained at a moisture level of 65% during the initial stage. The effects of the evacuation time, duration time of heating the substrate holder at $250^{\circ}C$ as well as the plasma treatment on the inside chamber wall on the formation of c-BN were studied. The effects of heating as well as the plasma treatment very effectively eliminated the moisture adsorbed on the chamber wall. A pre-deposition condition for the stable and repeatable deposition of c-BN is suggested.

Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method (용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상)

  • Park, ae-Hyeok;Kim, Soon-Ho;Jeong, Jae-In;Yang, Ji-Hoon;Lee, Kyung-Hwang;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.

Superhard SiC Thin Films with a Microstructure of Nanocolumnar Crystalline Grains and an Amorphous Intergranular Phase

  • Lim, Kwan-Won;Sim, Yong-Sub;Huh, Joo-Youl;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.206-211
    • /
    • 2019
  • Silicon carbide (SiC) thin films become superhard when they have microstructures of nanocolumnar crystalline grains (NCCG) with an intergranular amorphous SiC matrix. We investigated the role of ion bombardment and deposition temperature in forming the NCCG in SiC thin films. A direct-current (DC) unbalanced magnetron sputtering method was used with pure Ar as sputtering gas to deposit the SiC thin films at fixed target power of 200 W and chamber pressure of 0.4 Pa. The Ar ion bombardment of the deposited films was conducted by applying a negative DC bias voltage 0-100 V to the substrate during deposition. The deposition temperature was varied between room temperature and $450^{\circ}C$. Above a critical bias voltage of -80 V, the NCCG formed, whereas, below it, the SiC films were amorphous. Additionally, a minimum thermal energy (corresponding to a deposition temperature of $450^{\circ}C$ in this study) was required for the NCCG formation. Transmission electron microscopy, Raman spectroscopy, and glancing angle X-ray diffraction analysis (GAXRD) were conducted to probe the samples' structural characteristics. Of those methods, Raman spectroscopy was a particularly efficient non-destructive tool to analyze the formation of the SiC NCCG in the film, whereas GAXRD was insufficiently sensitive.

Study on the deposition Characteristics of Bi Thin Film (Bi 박막의 성막 특성에 관한 연구)

  • Yang, Dong-Bok;Park, Yong-Pil;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.61-64
    • /
    • 2003
  • This paper presents Bi thin films have been fabricated by atomic layer-by-layer deposition and co-deposition at an IBS method. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. Mg(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 655 and $820^{\circ}C$ and the highly condensed ozone gas pressure$(PO_3)$ in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}$ Torr. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $O_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

  • PDF

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:$ZnCo_2O_4$ Thin-Film

  • Lee, Chil-Hyoung;Choi, Won-Kook;Lee, Jeon-Kook;Choi, Doo-Jin;Oh, Young-Jei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.87-87
    • /
    • 2011
  • Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:$ZnCo_2O_4$ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:$ZnCo_2O_4$ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:$ZnCo_2O_4$ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:$ZnCo_2O_4$ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of 36~85%, and hole mobility of 1.1~3.7 $cm^2$/Vs, were obtained.

  • PDF