• Title/Summary/Keyword: sputtering gas pressure

Search Result 320, Processing Time 0.026 seconds

Electrical and optical properties of ZnO:Al thin films prepared by reactive sputtering method (반응성 sputtering법으로 제막된 ZnO : Al 박막의 전기.광학적 특성)

  • 유병석;유세웅;이정훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.480-492
    • /
    • 1996
  • AZO (Aluminum doped Zinc Oxide) transparent conducting thin films were fabricated by reactive DC mangnetron sputtering method using zinc target containing 2 wt% of Al. Transition range with optimum transmittance and conductivity was obtained by contrlling partial pressure of reactive oxygen gas. Sputtering condition for this transition range could be kept stable by regulating the target voltage. According to XRD analysis, there was only one peak for (002) plane in AZO films and the films deposited in transition range.

  • PDF

The Properties Characterization of ZnO Thin Film Grown by RF Sputtering (RF스퍼터링법으로 제작한 ZnO박막의 특성평가)

  • Jung, S.M.;Chong, K.C.;Choi, Y.S.;Kim, D.Y.;Kim, C.S.;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1433-1435
    • /
    • 1997
  • ZnO shows the properties of wide conductivity variation, high optical transmittance, and excellent piezoelectricity. Using these properties of ZnO, the material applications were extended to sensors, SAW filters, solar cells, and display devices. This paper investigated transmittance influencing factors for thin film ZnO grown by RF magnetron sputtering. The growth rate and structural investigation were carried out in conjunction with optical transmittance characteristics of thin film ZnO. The glass substrate temperature of $175^{\circ}C$ exhibited a preferential crystallization along (002) orientation. Transmittance of ZnO film deposited at the substrate temperature of $175^{\circ}C$ showed higher than 92%. An active sputter gas was investigated with a variation of $O_2$ partial pressure from 0 to 10% in an Ar atmosphere. ZnO film grown in 100% Ar gas shows that a reduced transmittance of 82% at the short wavelengths and decreased resistivity value. As the partial pressure of $O_2$ gas increased, the optical transmittance was increased above 90% at the short wavelengths, however, resistivity was drastically increased to higher than $10^4{\Omega}$-cm.

  • PDF

Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure (산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구)

  • Le, Sang-Yub;Kim, Ji-Hwan;Park, Dong-Hee;Byun, Dong-Jin;Choi, Won-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

Crystallographic Properties of ZnO/AZO thin Film Prepared by FTS method (FTS법으로 제작한 ZnO/AZO 박막의 결정학적 특성)

  • 금민종;강태영;최형욱;박용서;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.979-982
    • /
    • 2004
  • The ZnO thin films were prepared by the FTS (facing target sputtering) system, which enables to provide high density plasma and a high deposition rate at a low working gas pressure. We introduced the AZO thin film in order to improve the crystallographic properties of ZnO thin film because of the AZO(ZnO:Al) thin film has an equal crystal structure to the ZnO thin film. ZnO/AZO thin films were deposited at a different oxygen gas flow ratio, R.T. 2mTorr working pressure and a 0.8A sputtering current. The film thickness and c-axis preferred orientation of ZnO/AZO/glass thin films were measured by ${\alpha}$-step and an x-ray diffraction (XRD) instrument. In the results, we could prepare the ZnO thin film with c-axis preferred orientation of about 6$^{\circ}$ on substrate temperature R.T. at O$_2$ gas flo rate 0.5.

A Study on the Synthesis and Characterization of Carbon Nitride Thin Films by Magnetron Sputter (마그네트론 스퍼터에 의한 Carbon Nitride 박막의 합성 및 특성에 관한 연구)

  • Park, Gu-Bum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.3
    • /
    • pp.107-112
    • /
    • 2003
  • Amorphous carbon nitride thin films have been deposited on silicon (100) by reactive magnetron sputtering method. The basic depositon parameters varied were the r.f. power(up to 250 W), the deposition pressure in the reactor(up to 100 mtorr) and Ar:$N_2$ gas ratio. FT-IR and X-ray photoelectron spectra showed the presence of different carbon-nitrogen bonds in the films. The surface topography of the films was studied by scanning electron microscopy(SEM) and atomic force microscopy(AFM).

OLED용 Al 음전극 제작 및 I-V 특성

  • Geum Min-Jong;Gwon Gyeong-Hwan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.102-105
    • /
    • 2005
  • In this study Al electrode for OLED was deposited by FTS(Facing Targets Sputtering) system which can deposit thin films with low substrate damage. The Al thin films were deposited on the cell (LiF/EML/HTL/Bottom electrode) as a function of working gas such as Ar, Kr or mixed gas. Also Al thin films were prepared with working gas pressure (1, 6 mTorr ). The film thickness and I-V curve of Al/cell were evaluated by $\alpha$-step and semiconductor parameter (HP4156A) measurement.

  • PDF

Effect of hydrogen addition to use DC sputtering method on the electrical properties of Al/AlN/Si MIS capacitor fabrication (DC sputtering법을 이용한 Al/AlN/Si MIS capacitor 제작 및 수소첨가가 전기적 특성에 미치는 영향)

  • Kim, Min-Suk;Kwon, Jung-Yul;Kim, Jee-Gyun;Lee, Heon-Yong;Lee, Hwan-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1919-1921
    • /
    • 1999
  • AlN thin films were fabricated by sputter for the application of MIS device with Al/AlN/Si structure. We controled that sub-temperature room-temperature. Sputtering pressure 5 mTorr, flow ratio Ar:$N_2$=1:1(4sccm:4sccm), and appended hydrogen gas $0{\sim}5%$. AlN thin films thickness fabricated to maintain $2700{\AA}$ time control. Before the experiment remove to the contaminated material use the Ultrasonic every 10 minute use the acetone and ethanol, then use the HF remove oxide-substance at 10 second. To analyze characteristic of the $H_2$ gas addition period, C-V and I-V characteristic make and experiment $H_2$ gas at addition period progressive capability of I-V and C-V characteristic.

  • PDF

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.

Preparation of Precision Thin Film Resistor Sputtered by Magnetron Sputtering (IC용 초정밀 박막저항소자의 제조와 특성연구)

  • Ha, H.J.;Jang, D.J.;Moon, S.R.;Park, C.S.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1236-1238
    • /
    • 1994
  • TiAlN thin films were prepared by a multi target r.f magnetron sputtering system under different conditions. We have investigated the resistivity and T.C.R. (Temperature Coefficient of Resistance) characteristics of TiAlN films deposited on $Al_2O_3$ and glass substrates by sputtering in an $Ar:N_2$ gas mixture. We used Al and Ti metal as Target Material and $Ar:N_2$ gas as working gas. We varied the partial pressure ratio of $N_2/Ar$ from 0.2/7 to 1.0/6.2 (SCCM). And the R.F power of Ti and Al Target also were varied as 160/240, 200/200 and 240/160(W). In this experiment, we can get the precision thin film resistor with a very low T.C.R. (Temperature Coefficient of Resistance) below 25 ppm ${\Omega}/^{\circ}C$.

  • PDF

LCD 제조용 스퍼터링 장비의 비접촉식 유리평판 이송장치에 대한 수치적 연구

  • Gang, U-Jin;Im, Ik-Tae;Kim, U-Seung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.149-156
    • /
    • 2007
  • Non-contact transportation of the large-sized glass plate using air-cushion is considered for sputtering system of LCD panel. The Argon gas from second gas injection holes is injected to levitate and transport the glass plate. Low maximum pressure and uniform pressure distribution on the bottom surface of the glass plate must be maintained for stable levitation and transportation of the glass plate. Therefore, the analysis of fluid flow between the glass plate and the air-pad is numerically performed for varying space between the injection holes in this study. The pressure uniformity on the bottom surface of the glass plate is evaluated for overall glass plate. The distance between the injection holes must be designed below 90 mm for obtaining the low maximum pressure and uniform pressure distribution.

  • PDF