• Title/Summary/Keyword: spreading model

Search Result 441, Processing Time 0.023 seconds

Generic Multidimensional Model of Complex Data: Design and Implementation

  • Khrouf, Kais;Turki, Hela
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.643-647
    • /
    • 2021
  • The use of data analysis on large volumes of data constitutes a challenge for deducting knowledge and new information. Data can be heterogeneous and complex: Semi-structured data (Example: XML), Data from social networks (Example: Tweets) and Factual data (Example: Spreading of Covid-19). In this paper, we propose a generic multidimensional model in order to analyze complex data, according to several dimensions.

Development of an object-oriented model management framework for computer executable algebraic modeling languages (최적화 모델링 언어를 위한 객체 지향 모형 관리 체계의 개발)

  • 허순영
    • Korean Management Science Review
    • /
    • v.11 no.2
    • /
    • pp.43-63
    • /
    • 1994
  • A new model management framework is proposed to accommodate wide-spreading algebraic modeling languages (AMLs), and to facilitate a full range of model manipulation functions. To incorporate different modeling conventions of the leading AMLs (AMPL, GAMS, and SML) homogeneously, generic model concepts are introduced as a conceptual basis and are embodied by the structural and operational constructs of an Object-Oriented Database Management System(ODBMS), enabling the framework to consolidate components of DSSs(database, modelbase, and associated solvers) in a single formalism effectively. Empowered by a database query language, the new model management framework can provide uniform model management commands to models represented in different AMLs, and effectively facilitate integration of the DSS components. A prototype system of the framework has been developed on a commercial ODBMS, ObjectStore, and a C++ programming language.

  • PDF

Evaluation of Micro EV's Spreading to Local Community by Multinomial Logit Model

  • Seki, Yoichi;Manrique, Luis C.;Amagai, Kenji;Takarada, Takayuki
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.2
    • /
    • pp.148-154
    • /
    • 2012
  • Micro Electric Vehicles are considered as a solution for reducing $CO_2$ emissions, however, it is difficult to evaluate its impact in a local community when it has been introduced. In this study, we evaluated how to spread the Micro EV within the community, using the utility derived from a multinomial logit model, and analyze the effect on $CO_2$ emissions. The householder's utility model is based on an investigation about Kiryu citizen's activities of shopping, transportation methods, etc. Using the geographic information system, we get the distances of each householder and the stores, and estimate a multinomial logit model about the combination choices of shopping stores and transportation method.

A Study on the Model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Park, Jun-Sang;Ji, Young-Moo;Jun, Hyang-Sig;Jeon, Dae-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For the numerical analysis, a line fire model with Boussinesq fluid approximation, which is idealized by the spreading shape of forest fire on the ground, is adopted. Comparing full 2-D and 3-D numerical solutions with 2-D similarity solution, it has been built a new model that is useful for temperature prediction along the symmetric vertical axis of fire model for both cases of laminar and turbulent flow.

A Study on the Application Strategies of the FRBR Model: Focused on Foreign Countries (FRBR모형의 적용 전략에 관한 연구 - 해외 사례를 중심으로 -)

  • Lee Sung-Sook
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.3
    • /
    • pp.305-331
    • /
    • 2006
  • FRBR(Functional Requirements for Bibliographic Records) that is conceptual model of bibliographic universal is increased its value because of spreading digital libraries. This research investigates application strategies of the FRBR model, For the study 7 foreign application cases are analyzed. Especially focused on the reason of adoption and method of the entities in the first group of the FRBR model. The result of this research could be the basic resources for study and implementation of the FRBR Model.

Development of νt-κ-γ Turbulence Model for Computation of Turbulent Flows (난류유동 해석을 위한 νt-κ-γ 모델의 개발)

  • Choi, Won-Chul;Seo, Young-Min;Choi, Sang-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1014-1021
    • /
    • 2009
  • A new eddy viscosity equation was formulated from assumption of turbulence length scale equation and specific dissipation ratio equation. Then, a set of turbulence model equations for the turbulent kinetic energy ${\kappa}$, the viscosity ${\nu}_t$, and the intermittency factor ${\gamma}$ is proposed by considering the entrainment effect. Closure coefficients are determined by experimental data and resorting to numerical optimization. Present model has been applied to compute four representative cases of free shear flows and successfully compared with experimental data. In particular, the spreading rate, the centreline mean velocity and the profiles of intermittency are calculated with improved accuracy. Also, the proposed ${\nu}_t-{\kappa}-{\gamma}$ model was applied to channel flow by considering the wall effect and the results show good agreements with the Direct Numerical Simulation data.

A Three-Dimensional Turbulence Model far the Thermal Discharge into Cross-Flow Field (가로흐름 수역으로 방출되는 3차원 온배수 난류모형)

  • 이남주;최흥식;허재영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 1995
  • For an accurate prediction of the temperature Held induced by surface discharge of heated water into an ambient cross-flow field. a three-dimensional near-field numerical model using k-$\varepsilon$ turbulence clousure is developed Rather restricted as it is, the numerical results of the model agree well with the experimental data. The developed model simulates quite adequately the stratification, gravitational lateral spreading, and upward entrainment of thermal jet which cannot be simulated by a depth-integrated two-dimensional numerical model, as well as the interaction with cross-flow.

  • PDF

Effects of Geological Structure and Tree Density on the Forest Fire Patterns (지형구조와 나무밀도가 산불패턴에 미치는 영향)

  • Song, Hark-Soo;Kwon, Oh Sung;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.259-266
    • /
    • 2014
  • Understanding the forest fire patterns is necessary to comprehend the stability of the forest ecosystems. Thus, researchers have suggested the simulation models to mimic the forest fire spread dynamics, which enables us to predict the forest damage in the scenarios that are difficult to be experimentally tested in laboratory scale. However, many of the models have the limitation that many of them did not consider the complicated environmental factors, such as fuel types, wind, and moisture. In this study, we suggested a simple model with the factors, especially, the geomorphological structure of the forest and two types of fuel. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space at densities ranging from 0.5 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by the structure and tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

A Numerical Model for the Movement of Spilled Oil at Ocean (해상누유 확산의 수치해석)

  • Dong-Y. Lee;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.94-101
    • /
    • 1994
  • This paper describes a short-term prediction model for the movement of an oil slick in shallow waters. Under the assumption that the initial movement of the oil slick is governed by spreading and advection, the model has been developed and applied to Kyungki-Bay near Incheon Harbor. The initial spreading is estimated by using an empirical formula. The depth-averaged momentum equations are solved numerically for the volume transport velocities, in which the $M_2$ tide is the main driving source. A staggered grid system is adopted fur spatial discretization and the half-time method is implemented for time marching. The numerical result is visualized with the help of animation and thus the contaminated area is displayed on a monitor in time sequence. The input data are the time, the location and the volume of spill accident as well as environmental data such as md and $M_2$ tide.

  • PDF

Investigation on effect of surface properties on droplet impact cooling of cladding surfaces

  • Wang, Zefeng;Qu, Wenhai;Xiong, Jinbiao;Zhong, Mingjun;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.508-519
    • /
    • 2020
  • During transients or accidents, the reactor core is uncovered, and droplets entrained above the quench front collides with the uncovered fuel rod surface. Droplet impact cooling can reduce the peak cladding temperature. Besides zirconium-based cladding, versatile accidental tolerant fuel (ATF) claddings, including FeCrAl, have been proposed to increase the accident coping time. In order to investigate the effect of surface properties on droplet impact cooling of cladding surfaces, the droplet impact phenomena are photographed on the FeCrAl and zircaloy-4 (Zr-4) surfaces under different conditions. On the oxidized FeCrAl surface, the Leidenfrost phenomenon is not observed even when the surface temperature is as high as 550 ℃ with We > 30. Comparison of the impact behaviors observed on different materials shows that nucleate and transition boiling is more intensive on surfaces with larger thermal conductivity. The Leidenfrost point temperature (LPT) decreases with the solid thermal effusivity (${\sqrt{k{\rho}C_p}}$). However, the CHF temperature is relatively insensitive to the surface oxidation and Weber number. Droplet spreading diameter is analyzed quantitatively in the film boiling stage. Based on the energy balance a correlation is proposed for droplet maximum spreading factor. A mechanistic model is also developed for the LPT based on homogeneous nucleation theory.