• Title/Summary/Keyword: spintronics

Search Result 200, Processing Time 0.043 seconds

SI-BASED MAGNETIC TUNNELING TRANSISTOR WITH HIGH TRANSFER RATIO

  • S. H. Jang;Lee, J. H.;T. Kang;Kim, K. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.24-24
    • /
    • 2003
  • Metallic magnetoelectronic devices have studied intensively and extensively for last decade because of the scientific interest as well as great technological importance. Recently, the scientific activity in spintronics field is extending to the hybrid devices using ferromagnetic/semiconductor heterostructures and to new ferromagnetic semiconductor materials for future devices. In case of the hybrid device, conductivity mismatch problem for metal/semiconductor interface will be able to circumvent when the device operates in ballistic regime. In this respect, spin-valve transistor, first reported by Monsma, is based on spin dependent transport of hot electrons rather than electron near the Fermi energy. Although the spin-valve transistor showed large magnetocurrent ratio more than 300%, but low transfer ratio of the order of 10$\^$-5/ prevents the potential applications. In order to enhance the collector current, we have prepared magnetic tunneling transistor (MTT) with single ferromagnetic base on Si(100) collector by magnetron sputtering process. We have changed the resistance of tunneling emitter and the thickness of baser layer in the MTT structure to increase collector current. The high transfer ratio of 10$\^$-4/ range at bias voltage of more than 1.8 V, collector current of near l ${\mu}$A, and magnetocurrent ratio or 55% in Si-based MTT are obtained at 77K. These results suggest a promising candidate for future spintronic applications.

  • PDF

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF

Deep-Level Defects on Nitrogen-Doped ZnO by Photoinduced Current Transient Spectroscopy

  • Choi, Hyun Yul;Seo, Dong Hyeok;Kwak, Dong Wook;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Lee, Jae Sun;Lee, Sung Ho;Yoon, Deuk Gong;Bae, Jin Sun;Cho, Hoon Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.421-422
    • /
    • 2013
  • Recently, ZnO has received attentionbecause of its applications in optoelectronics and spintronics. In order to investigate deep level defects in ZnO, we used N-doped ZnO with various of the N-doping concentration. which are reference samples (undoped ZnO), 27%, 49%, and 88%-doped ZnO. Photoinduced current transient spectroscopy (PICTS) measurement was carried out to find deep level traps in high resistive ZnO:N. In reference ZnO sample, a deep trap was found to located at 0.31 (as denoted as the CO trap) eV below conduction band edge. And the CN1 and CN2 traps were located at 0.09, at 0.17 eV below conduction band edge, respectively. In the case of both annealed samples at 200 and $300^{\circ}C$, the defect density of the CO trap increases and then decreases with an increase of N-doping concentration. On the other hands, the density of CN traps has little change according to an increase of N-doping concentration in the annealed sample at $300^{\circ}C$. According to the result of PICTS measurement for different N-doping concentration, we suggest that the CO trap could be controled by N-doping and the CN traps be stabilized by thermal annealing at $300^{\circ}C$.

  • PDF

Carrier-enhanced Ferromagnetism in Cr-doped ZnO (Cr이 치환된 ZnO에서 나르개에 의한 강자성의 향상)

  • Sim, Jae-Ho;Kim, Hyo-Jin;Kim, Do-Jin;Ihm, Young-Eon;Yoon, Soon-Kil;Kim, Hyun-Jung;Choo, Woong-Kil
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.181-185
    • /
    • 2005
  • We have investigated the effects of Al codoping on the structural, electrical transport, and magnetic properties of oxide diluted magnetic semiconductor $Zn_{1-x}Cr_xO$ thin films prepared by reactive sputtering. Nondoped $Zn_{0.99}Cr_{0.01}O$ thin films show semiconducting transport behavior and weak ferromagnetic characteristic. The Al doping increases the carrier concentration and results in an decrease of resistivity and metal-insulator transition behavior. With increasing carrier concentration, the magnetic properties drastically change, exhibiting a remarkable increase of the saturation magnetization. These results show carrier-enhanced ferromagnetic order in Cr-doped ZnO.

First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2 (제일원리계산에 의한 단층 MoS2의 1H/1T 경계 자성)

  • Jekal, Soyoung;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.71-75
    • /
    • 2016
  • Monolayer $MoS_2$ is energetically most stable when it has a 1H phase, but 1H to 1T phase transition ($1H{\rightarrow}1T$) is easily realized by various ways. Even though magnetic moment is not observed during $1H{\rightarrow}1T$, $0.049{\mu}_B/MoS_2$ is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in ($2{\times}2$) supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered $MoS_2$. Our result suggests that $MoS_2$ can be applied for spintronics such as a spin transistor.

Low Temperature Optical Properties of NiO coated ZnO Nanorods (NiO 코팅 두께에 따른 ZnO 나노막대의 저온분광특성)

  • Shin, Y.H.;Park, Y.H.;Kim, Yong-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.286-290
    • /
    • 2007
  • We fabricated NiO coated ZnO nanorods using ZnO nanorods grown on a Si substrate. After thermal hydrogenation process of these NiO-ZnO core-shell nanorods, we confirm that Ni nanodots were built up on the surface of ZnO nanorods. Photoluminescence (PL) measurements at T=5 K were made to understand the optical properties of these various nanorods. As samples sequencially transformed into $ZnO{\rightarrow}NiO-ZnO{\rightarrow}Ni$ nanodot-ZnO, PL transition energies and intensities are varied as well. In comparison to pure ZnO nanorod, the acceptor bound exciton ($A^0X$) became the minor peak for NiO-ZnO nanorods. On the other hand, for Ni nanodot-ZnO sample, ($A^0X$) transition peak intensity became the most dominant peak. This is due to the fact that during thermal hydrogenation process, appreciable amounts of Ni and hydrogen ions defused into ZnO nanorod which played as accepters.

Enhanced Magnetic Properties of BiFe1-$_xNi_xO_3$

  • Yoo, Y.J.;Hwang, J.S.;Park, J.S.;Kang, J.H.;Lee, B.W.;Lee, S.J.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.183-183
    • /
    • 2011
  • Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. $BiFeO_3$ is one of the well-known single-phase multiferroic materials with $ABO_3$ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N$ ~ 643 K, but the ferroelectric behavior below the Curie temperature $T_c$~1,103 K. In this study, the $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $Bi_2O_32$, $Fe_3O_4$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450$^{\circ}C$ for $BiFe_{1-x}Ni_xO_3$ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800$^{\circ}C$ and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu K${\alpha}$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation $Ar^+$ laser source under air ambient condition on a focused area of 1-${\mu}m$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

  • PDF

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

Phase Evolution Behavior of (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films

  • Kim, Kyung-Man;Byun, Seung-Hyun;Yang, Pan;Lee, Yoon-Ho;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.331-332
    • /
    • 2008
  • Couplings between electric, magnetic, and structural order parameters result in the so-called multiferroic phenomena with two or more ferroic phenomena such as ferroelectricity, ferromagnetism, or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) permits potential applications in information storage, spintronics, and magnetic or electric field sensors. The perovskite BiFeO3(BFO) is known to be antiferromagnetic below the Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors responsible for leakage current in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is to make donor-doped BFO compounds and thin films. In this study, (Bi1-x,Ndx)(Fe1-y,Tiy)O3 thin films have been deposited on Pt(111)/TiO2/SiO2/Si substrates by pulsed laser deposition. The effect of dopants on the phase evolution and surface morphology are analyzed. Furthermore, electrical and magnetic properties are measured and their coupling characteristics are discussed.

  • PDF

Ferromagnetism and Magnetotransport of Be-codoped GaMnAs (Be-codoped GaMnAs의 상온 강자성 및 자기 수송 특성)

  • Im, W.S.;Yu, F.C.;Gao, C.X.;Kim, D.J.;Kim, H.J.;Ihm, Y.E.;Kim, C.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.213-218
    • /
    • 2004
  • Be-codoped GaMnAs layers were systematically grown via molecular beam epitaxy with varying Mn- and Be-flux. Mn flux was controlled to cover from solid solution type GaMnAs to precipitated GaMnAs. Two Be flux were chosen to exhibit semiconducting and metallic resistivity in the grown layers. The structural, electrical, and magnetic properties of GaAs:(Mn, Be) were investigated. The lightly Be-codoped GaMnAs layers showed ferromagnetism at room temperature, but did not reveal magnetotransport due to small magneto-resistance and high resistance of the matrix. However, room temperature magnetotransport could be observed in the degenerate Be-codoped GaMnAs layers, and which was assisted by the high conductivity of the matrix. The Be-codoping has promoted segregation of new ferromagnetic phase of MnGa as well as MnAs.