Enhanced Magnetic Properties of $\mathrm{BiFe} 1-\mathrm{xi}_{\mathrm{x}} \mathrm{O}_{3}$

Y. J. Yoo ${ }^{1}$, J. S. Hwang ${ }^{1}$, J. S. Park ${ }^{2}$, J. -H. Kang ${ }^{3}$, B. W. Lee ${ }^{4}$, S. J. Lee ${ }^{1}$, K. W. Kim ${ }^{5}$, Y. P. Lee ${ }^{1}$
${ }^{1}$ Dept. of Physics, Hanyang University, Seoul 133-791
${ }^{2}$ Institute of Basic Sciences and Dept. of Physics, Sungkyunkwan University, Suwon 446-740
${ }^{3}$ Dept. of Nano \& Electronic Physics, Kookmin University, Seoul 136-702
${ }^{4}$ Hankuk University of Foreign Studies, Yongin, Korea
${ }^{5}$ Sunmoon University, Asan, Korea

Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. BiFeO_{3} is one of the well-known single-phase multiferroic materials with ABO_{3} structure and G-type antiferromagnetic behavior below the Neel temperature $\mathrm{T}_{\mathrm{N}} \sim 643 \mathrm{~K}$, but the ferroelectric behavior below the Curie temperature $\mathrm{T}_{\mathrm{c}} \sim 1,103 \mathrm{~K}$. In this study, the $\mathrm{BiFe}_{1-\mathrm{x}} \mathrm{Ni}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0$ and 0.05$)$ bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $\mathrm{Bi}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{3} \mathrm{O}_{4}$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at $450^{\circ} \mathrm{C}$ for $\mathrm{BiFe}_{1-\mathrm{x}} \mathrm{Ni}_{\mathrm{x}} \mathrm{O}_{3}$ for 24 h . The obtained powders were grinded, and pressed into $5-\mathrm{mm}$-thick disks of $1 / 2$-inch diameter. The disks were directly put into the oven, which has been heated up to $800^{\circ} \mathrm{C}$ and sintered in air for 20 min . The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with $514.5-\mathrm{nm}$-excitation Ar+ laser source under air ambient condition on a focused area of $1-\mu \mathrm{m}$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

Keywords: Multiferroic, BiFeO3, Magnetic properties, Ferroelectric properties

