DOI QR코드

DOI QR Code

Carrier-enhanced Ferromagnetism in Cr-doped ZnO

Cr이 치환된 ZnO에서 나르개에 의한 강자성의 향상

  • Sim, Jae-Ho (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Ihm, Young-Eon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Soon-Kil (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun-Jung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choo, Woong-Kil (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2005.06.01

Abstract

We have investigated the effects of Al codoping on the structural, electrical transport, and magnetic properties of oxide diluted magnetic semiconductor $Zn_{1-x}Cr_xO$ thin films prepared by reactive sputtering. Nondoped $Zn_{0.99}Cr_{0.01}O$ thin films show semiconducting transport behavior and weak ferromagnetic characteristic. The Al doping increases the carrier concentration and results in an decrease of resistivity and metal-insulator transition behavior. With increasing carrier concentration, the magnetic properties drastically change, exhibiting a remarkable increase of the saturation magnetization. These results show carrier-enhanced ferromagnetic order in Cr-doped ZnO.

반응성 스퍼터링 방법으로 성장시킨 $Zn_{0.09}Cr_{0.01}O$ 묽은 자성반도체 박막의 구조와 전기 수송과 자기 특성에 미치는 Al 첨가 효과를 탐구하였다. Al이 첨가되지 않은 $Zn_{0.09}Cr_{0.01}O$ 박막은 반도체적인 수송 특성과 함께 미약한 강자성 특성을 보였다. Al을 첨가함으로써 n-형 나르개인 전자의 농도 증가와 더불어 금속성 수송 특성을 나타냈으며 포화자기화가 현저하게 증가하고 이력곡선이 뚜렷하게 나타나는 등 자기 특성의 격렬한 변화가 관찰되었다. 이 결과들은 Cr이 첨가된 ZnO에서 나르개에 의한 강자성 질서의 향상을 보여준다.

Keywords

References

  1. M. Ziese and M. J. Thorton, Spin Electronics (Springer, Berlin, 2001); D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002)
  2. H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Ando, S. Katsumoto, and Y. Iye, Appl. Phys. Lett., 69, 363(1996) https://doi.org/10.1063/1.117107
  3. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukara, H. Ohno, and D. D. Awschalom, Nature, 402, 790(1999) https://doi.org/10.1038/45509
  4. H. Ohno, D. Chiba, F. Matsujura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature, 408, 944(2000) https://doi.org/10.1038/35050040
  5. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, J. Appl. Phys., 93, 1(2003) https://doi.org/10.1063/1.1517164
  6. W. Prellier, A. Fouchet, and B. Mercey, J. Phys.: Condens. Matter, 15, R1583(2003) https://doi.org/10.1088/0953-8984/15/37/R01
  7. S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol., 19, R59(2004) https://doi.org/10.1088/0268-1242/19/1/L02
  8. T. Fukumura, Y. Yamada, H. Toyasaki, T. Hasegawa, H. Koinuma, and M. Kawasaki, Appl. Surf Sci., 223, 62(2004) https://doi.org/10.1016/S0169-4332(03)00898-5
  9. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys., 39, L555(2000) https://doi.org/10.1143/JJAP.39.L555
  10. D. S. Ginley and C. Bright, Mater. Res. Soc. Bull., 25, 15(2000)
  11. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasekawa, and H. Koinuma, Appl. Phys. Lett., 78, 3824(2001) https://doi.org/10.1063/1.1337631