Browse > Article
http://dx.doi.org/10.4283/JKMS.2016.26.3.071

First-principles Calculations on Magnetism of 1H/1T Boundary in Monolayer MoS2  

Jekal, Soyoung (Department of Physics and EHSRC, University of Ulsan)
Hong, Soon Cheol (Department of Physics and EHSRC, University of Ulsan)
Abstract
Monolayer $MoS_2$ is energetically most stable when it has a 1H phase, but 1H to 1T phase transition ($1H{\rightarrow}1T$) is easily realized by various ways. Even though magnetic moment is not observed during $1H{\rightarrow}1T$, $0.049{\mu}_B/MoS_2$ is obtained in local 1T phase; 75% 2H and 25% 1T phases are mixed in ($2{\times}2$) supercell. Most magnetic moment is originated from the 1T phase Mo atom in the supercell, while the magnetic moments of other atoms are negligible. As a result, magnetic/non-magnetic boundary is created in the monolayered $MoS_2$. Our result suggests that $MoS_2$ can be applied for spintronics such as a spin transistor.
Keywords
first principles calculation; 2D material; electronic structure; spitronics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).   DOI
2 W. S. Yun and J. D Lee, J. Phys. Chem. C 119, 2822 (2015).   DOI
3 K. Lee, W. S. Yun, and J. D. Lee, Phys. Rev. B 91, 125420 (2015).   DOI
4 S. Lebegue and O. Eriksson, Phys. Rev. B 79, 115409 (2009).   DOI
5 W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 033305 (2012).   DOI
6 H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, ACS Nano 8, 6563 (2014).   DOI
7 S. W. Han, H. Kwon, S. K. Kim, S. Ryu, W. S. Yun, D. H. Kim, J. H. Hwang, J.-S. Kang, J. Baik, H. J. Shin, and S. C. Hong, Phys. Rev. B 84, 045409 (2010).
8 S. W. Han, Y. H. Hwang, S.-H. Kim, W. S. Yun, J. D. Lee, M. G. Park, S. Ryu, J. S. Park, D.-H. Yoo, S.-P. Yoon, S. C. Hong, K. S. Kim, and Y. S. Park, Phys. Rev. Lett. 110, 247201 (2013).   DOI
9 Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).   DOI
10 H. Pan and Y. W. Zhang, J. Mater. Chem. 22, 7280 (2012).   DOI
11 S. Tongay, S. S. Varnoosfaderani, B. R. Appleton, J. Wu, and A. F. Hebard, Appl. Phys. Lett. 101, 123105 (2012).   DOI
12 H. Pan and Y. W. Zhang, J. Phys. Chem. C 116, 11752 (2012).   DOI
13 S. Cristol, J. F. Paul, E. Payen, D. Bougeard, S. Clemendot, and F. Hutschka, J. Phys. Chem. B 106, 5659 (2002).   DOI
14 Q. Yue, Z. Shao, S. Chang, and J. Li, Nanoscale Res. Lett. 8, 1 (2013).   DOI
15 N. M. Galea, E. S. Kadantsev, and T. Ziegler, J. Phys. Chem. C 113, 193 (2008).
16 Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Nat. Nanotechnol. 9, 391 (2014).   DOI
17 G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).   DOI
18 G. Kresse and J. Furthmuller, Comput. Mater. Sci. 5, 15 (1996).
19 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
20 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI
21 Q. Tang and D. E. Jiang, Chem. Mater. 27, 3743 (2015).   DOI
22 P. E. Blochl, Phys. Rev. B 50, 17953 (1994).   DOI
23 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).   DOI
24 P. Maragakis, S. A. Andreev, Y. Brumer, D. R. Reichman, and E. Kaxiras, J. Chem. Phys. 117, 4651 (2002).   DOI
25 S. Mathew, K. Gopinadhan, T. K. Chan, X. J. Yu, D. Zhan, L. Cao, A. Rusydi, M. B. H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, and John T. L. Thong, Appl. Phys. Lett. 101, 102103 (2012).   DOI