• Title/Summary/Keyword: spin-structure

Search Result 727, Processing Time 0.027 seconds

A First-principles Study on Magnetism of Al Impurity in bcc Fe

  • Rahman, Gul;Kim, In-Gee
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The magnetism and electronic structure of bcc $Al_1Fe_{26}$ was investigated by means of first-principles calculations with and without spin-orbit coupling (SOC). From the calculated total energy, the SOC corrected system is shown to be approximately 5 meV per atom lower than the SOC uncorrected system. The induced spin magnetic moment at the Al site was -0.125 ${\mu}_B$ without SOC and -0.124 ${\mu}_B$ with SOC. The orbital magnetic moments were calculated to be 0.002 ${\mu}_B$ in [$\overline{1}$00] direction for Al. The electronic structures showed the nearest neighbor antiferromagnetic interaction between Fe and Al to be essential for determining the magnetism of the $Al_1Fe_{26}$ system.

Correlation between Structures and Magnetism in Iron: Ferromagnetism and Antiferromagnetism

  • Lee, Dong-Kook;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2007
  • Even a pure bulk Fe has a complicated magnetic phase and its magnetism is still needed to be clarified. In this study we investigated the magnetism of bcc and fcc bulk Fe with total energy calculations as functions of atomic volume. The full-potential linearized augmented plane wave method was adopted within a generalized gradient approximation. The ground state of bulk Fe is confirmed to be of ferromagnetic (FM) bcc. For fcc structured Fe an antiferromagnetic (AFM) state is more stable compared to FM states which exist as low spin and high spin states. The stable AFM states were found to accompany a tetragonal distortion, while the FM states remained in a cubic symmetry. At an expanded lattice constant a high spin FM state was calculated to be able to be stabilized with significant enhanced magnetic moment compared to the value of the ground state, bcc FM.

Property of Spin-sprayed ZnO Film on PC Substrate (스핀 스프레이법으로 PC 기판에 제작한 산화아연 박막의 특성)

  • Hoong, Jeongsoo;Matsushita, Nobuhiro;Katsumata, Ken-ichi;Park, Yongseo;Kim, Kyunghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.27-30
    • /
    • 2018
  • In this study, ZnO film was deposited on polycarbonate substrate by spin-spray method at low substrate temperature of $85^{\circ}C$. Surface morphology of ZnO films was changed by adding citrate from rod to dense structure. As-deposited ZnO film indicated high transmittance above 80%. In case of the resistivity, as-deposited ZnO film had high resistivity due to the existence of organic substance in the film. However, organic substance was removed and resistivity was decreased to $3.9{\times}10^{-2}{\Omega}{\cdot}cm$, after UV irradiation.

Investigation of the Hyperfine Structure Effect in a Mn-Doped LiNbO3 (Mn이 첨가된 LiNbO3의 초 미세구조 효과 연구)

  • Lee, Haeng-Ki;Jang, Hyon-Chol;Park, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.171-177
    • /
    • 2012
  • The computer program (EPR-NMR program version 6.2) employed here sets up the spin Hamiltonian matrices and determines their eigenvalues using exact diagonalization. We study the electron spin resonance for $Mn^{2+}$ in ferroelectric $LiNbO_3$ single crystals. The self-energy is obtained using the projection operator method developed by Argyres and Sigel. The self-energy is calculated to be axially symmetric about the by the spin Hamiltonian. The line-widths decreased as the temperature increased; we assume that the hyperfine structure transition is a more dominant scattering than the other transitions. We conclude that the calculation process presented in this study is useful for quantum optical transitions.

A New Process for a High Performance $I^2L$ (고성능 $I^2L$을 위한 새로운 제작공정)

  • Han, Cheol-Hui;Kim, Chung-Gi;Seo, Gwang-Seok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 1981
  • A new I2L process for a high performance I2L structure is proposed. The modifiedstructure consists of a heavily doped extrinsic base and lowly doped intrinsic base where the collector regions are self-alignment with the intrinsic base regions. The proposed process untilizes spin-on sources as the diffusion sources and the self-alignment of collectors is achieved by using the hardened spin-on source as a diffusion mask. Test devices including a 13-stage ring oscillator have been fabricated by the proposed process on n/n+ silicon wafers with 6.5$\mu$m epitaxial layer. The maximum upward current gain of npn transistors is 8 for a three collector I2L cell. The speed-power product and minimum propagation delay for a one collector structure are 3.5 pJ and 50 ns, respectively.

  • PDF

Mossbauer Study for the Cation Distribution of Co-ferrite (CoxFe1-xO4) Thin Films (Co-ferrite 박막에서 양이온 거동에 관한 Mössbauer 분광 연구)

  • Park, Jae-Yun;Park, Young-Ran;Kim, Hee-Kyung;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • The crystallographic properties and cation distribution of oxyspinels ferrite $Co_xFe_{1-x}O_4$ thin films have been explored by X-ray diffraction, vibrating sample magnetometer (VSM), and conversion electron $M\"{o}ssbauer$ spectroscopy (CEMS). Thin films are prepared by sol-gel method. Normal spinel structure is transformed to inverse spinel structure with increasing Co concentration CEMS results indicate that most of $Fe^{3+}$ ions are substituted to $Co^{3+}$ions. Accordingly $Co^{2+}$ ions on octahedral site migrate to tetrahedral site. Magnetic moment is decreased with increasing Co concentration, which means high spin $Fe^{3+}$ ions are replaced by low spin $Co^{3+}$.

m-Phenylene-Linked Bis-(Biradicals). Generation, Characterization and Computational Studies

  • Nicolaides, Athanassios;Tomioka, Hideo
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.165-173
    • /
    • 2003
  • m-Phenylene-linked biscarbenes, bisnitrenes and carbenonitrenes can be formed photochemically from appropriate nitrogenous precursors. Generation of such reactive intermediates under matrix-isolation conditions allows for their characterization by spectroscopic techniques such as ESR, UV /vis and IR. The latter method is also useful in characterizing secondary products derived from these reactive intermediates. Computational chemistry methods complement experimental IR data, aiding, thus, in identification of such compounds. In addition electronic structure calculations help in developing qualitative and semi-quantitative models, which can be useful in predicting ground-state multiplicities. The parent systems of m-phenylene-linked carbenes and nitrenes have high-spin ground states, but a switching to lower multiplicity can be achieved by chemical substitution. The ground state and various low-lying excited states of m-phenylenecarbenonitrenes can be reasonably approximated by simple valence-bond depictions. Finally, m-phenylenecarbenonitrenes are photoreactive in the inert matrix isomerizing to cyclopropene derivatives.

  • PDF

Electron Spin Transition Line-width of Mn-doped Wurtzite GaN Film for the Quantum Limit

  • Park, Jung-Il;Lee, Hyeong-Rag;Lee, Su-Ho;Hyun, Dong-Geul
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • Starting with Kubo's formula and using the projection operator technique introduced by Kawabata, EPR lineprofile function for a $Mn^{2+}$-doped wurtzite structure GaN semiconductor was derived as a function of temperature at a frequency of 9.49 GHz (X-band) in the presence of external electromagnetic field. The line-width is barely affected in the low-temperature region because there is no correlation between the resonance fields and the distribution function. At higher temperature the line-width increases with increasing temperature due to the interaction of electrons with acoustic phonons. Thus, the present technique is considered to be more convenient to explain the resonant system as in the case of other optical transition systems.

Surface structure of MBE-Grown $\alpha$-$Fe_2O_3$(0001) by Intermediate-Energy X-ray Photoelectron Diffraction

  • 김용주
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.177-177
    • /
    • 1999
  • The surface structure of epitaxial $\alpha$-Fe2O3(0001) grown on $\alpha$-Al2O3(0001) has been investigated using intermediate-energy x-ray photoelectron diffraction. Comparison of experiment with quantum mechanical scattering theory reveals that the surface is Fe-terminated, and that the first four layer spacings are -41%, +18%, -8%, and +47% of the associated bulk values, respectively. these results agree reasonably well with the predictions of molecular mechanics and spin-density functional theory previously reported in the literature for the Fe-terminated surface. however, we find no evidence for and O-terminated surface predicted to be stable by spin-density functional theory.

  • PDF

SPIN REORIENTATION TRANSIT10N OF ULTRATHIN Co FILMS ON ARTIFICIALLY ROUGHENED Pd(111) SINGLE CRYSTAL (블록 공중합체를 이용한 CoCrPt 나노점 배열의 자기적 성질 연구)

  • Jeong, Jong-Ryul;Park, Yong-Sung;Kim, Jong-Hyun;Lee, Jeong-Won;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.78-79
    • /
    • 2002
  • It is well known that surface and interface roughnesses greatly affect the magnetic properties such as magnetic domain structure, magnetization reversal, magnetoresistance, and spin reorientation transition (SRT) of ultrathin magnetic films. Therefore, recent studies focus on artificially roughened surface, since it could be possible to systematically understand the effect of roughness on the magnetic properties as well as to obtain the desirable magnetic properties by artificially creating the surface structure and morphology. (omitted)

  • PDF