• 제목/요약/키워드: spin-structure

검색결과 727건 처리시간 0.024초

Magnetization of a Modified Magnetic Quantum Dot

  • Park, Dae-Han;Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.154-157
    • /
    • 2016
  • The energy dispersion and magnetization of a modified magnetic dot are investigated numerically. The effects of additional electrostatic potential, magnetic field non-uniformity, and Zeeman spin splitting are studied. The modified magnetic quantum dot is a magnetically formed quantum structure that has different magnetic fields inside and outside of the dot. The additional electrostatic potential prohibits the ground-state angular momentum transition in the energy dispersion as a function of the magnetic field inside the dot, and provides oscillation of the magnetization as a function of the chemical potential energy. The magnetic field non-uniformity broadens the shape of the magnetization. The Zeeman spin splitting produces additional peaks on the magnetization.

Magnetoresistance in Hybrid Type YBCO-NiO/NiFe/Cu/NiFe Film Structure

  • Lee, S.S;Rhee, J.R;Hwang, D.G;Rhie, K
    • Journal of Magnetics
    • /
    • 제6권3호
    • /
    • pp.83-85
    • /
    • 2001
  • The magnetoresistance properties of NiO/NiFe/Cu/NiFe spin valve film deposited on MgO(100) substrate with YBa$_2$$Cu_3O_7$(YBCO) film were investigated at room temperature and at 77 K. The magnetoresistance (MR) curves of the hybrid superconductor-magnetoresistor film structure showed an exchange coupling field of 300 Oe and an inverse magnetoresistance ratio of -6.5%. The magnetization configurations of the two magnetic layers in the NiO spin valve were antiparallel due to an increment in the conduction electron flow to superconductor YBCO film. This sample showed an inverse MR ratio.

  • PDF

제1원리 분자궤도계산법에 의한 초기 spin 조건에 따른 $MnO_2$ 반도체의 전자상태 변화 계산 (Calculation on Electronic State of $MnO_2$ Oxide Semiconductor with other initial spin conditions by First Principle Molecular Orbital Method)

  • 이동윤;김봉서;송재성;김현식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.148-151
    • /
    • 2003
  • The spin density of ${\beta}-MnO_2$ structure was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}O_{56}]^{-52}$. The ${\beta}-MnO_2$ is a paramagnetic oxide semiconductor material having the energy band gap of 0.18 eV and an 3 loan-pair electrons in the 3d orbital of an cation. This material exhibits spin-only magnetism and has the magnetic ordering temperature of 94 K. Below this temperature its magnetism appears as antiferromagnetism. The calculations of electronic state showed that if the initial spin condition of input parameters changed, the magnetic state changed from paramagnetic to antiferromagnetic. When d orbital of all Mn atoms in cluster had same initial spin state as only up spin, paramagnetic spin density distribution appeared by the calculation. On the other way, d orbital had alternately changed spin state along special direction the resulted spin distribution showed antiferromagnetism.

  • PDF

금속나노입자-유전체 이층 구조 구현을 위한 반투명 Cu 나노입자층 형성에 관한 연구 (Study on Formation of Semitransparent Cu Nanoparticle Layers for Realizing Metal Nanoparticle-Dielectric Bilayer Structures)

  • 윤혜련;조윤이;윤회진;이승윤
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.460-464
    • /
    • 2020
  • This study reports the fabrication and application of semitransparent Cu nanoparticle layers. Spin coating and subsequent drying of a Cu colloid solution were performed to deposit Cu nanoparticle layers onto Si and glass substrates. As the spin speed of the spin coating increases, the density of the nanoparticles on the substrate decreases, and the agglomeration of nanoparticles is suppressed. This microstructural variation affects the optical properties of the nanoparticle layers. The transmittance and reflectance of the Cu nanoparticle layers increase with increasing spin speed, which results from the trade-off between the exposed substrate area and surface coverage of the Cu nanoparticles. Since the glass substrates coated with Cu nanoparticle layers are semitransparent and colored, it is anticipated that the application of a Cu nanoparticle-dielectric bilayer structure to transparent solar cells will improve the cell efficiency as well as aesthetic appearance.

The Origin of the Spin-Orbit Alignment of Galaxy Pairs

  • Moon, Jun-Sung;An, Sung-Ho;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.28.3-29
    • /
    • 2021
  • Galaxies are not just randomly distributed in space; instead, a variety of galaxy alignments have been found over a wide range of scales. Such alignments are the outcome of the combined effect of interacting neighbors and the surrounding large-scale structure. Here, we focus on the spin-orbit alignment (SOA) of galaxy pairs, the dynamical coherence between the spin of a target galaxy and the orbital angular momentum of its neighbor. Based on a recent cosmological hydrodynamic simulation, the IllustrisTNG project, we identify paired galaxies with mass ratios from 1/10 to 10 at z = 0 and statistically analyze their spin-orbit angle distribution. We find a clear preference for prograde orientations (i.e., SOA), which is more prominent for closer pairs. The SOA is stronger for less massive targets in lower-density regions. The SOA witnessed at z = 0 has been developed progressively since z = 2. There is a clear positive correlation between the alignment strength and the interaction duration with its current neighbor. Our results suggest the scenario in which the SOA is developed mainly by interactions with a neighbor for an extended period of time, rather than by the primordial torque exerted by the large-scale structure.

  • PDF

컴퓨터 분석에 의한 Myosin Head의 SH가 Actin-Myosin Cross-Bridges에 따른 구조변화 연구 (The Structure Change Study on the Actin-Myosin Cross-Bridges in SH of Myosin Head by The Computer Data)

  • 김덕술;옥수열;박근호
    • 한국응용과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.84-90
    • /
    • 2005
  • IASL(iodo acetamide) and MSL(maleimide) disordered the orderly helix arrangement of myosin in the rest state of spin level. Especially the effect of IASL was great. Equatorial refiection(10,11) change inferred that myosin head was moved to the vicinity of actin filament by spin level. The intensity change of 143${\AA}$ and 72${\AA}$ could offer information of the mass projection of population of myosin heads along the :filament axis. The slope of intensity profile of the mass projection of 143${\AA}$ and reflection of IASL is appeared and that of MSL is appeared sharply. The decrease of 215${\AA}$ reflection intensity is appeared the periodical characteristic of 143${\AA}$ reflection by spin label. The raise of MSL actin reflection at 51${\AA}$ and 59${\AA}$ in the actin reflection change refers that the shifted myosin head binds a certain actin or changes an actin structure by spin label effect. Because iodo acetamide has a tendency to decease the actin reflection, actin dose not bind myosin head. From this result, we could conclude that LASL and MSL are spin labeled on SH of myosin head and disordered the helix arrangement of actin.

The discharge characteristic of Li ion doped MgO film in a flat fluorescent lamp structure

  • Ryu, Si-Hong;Lee, Seong-Eui;Ahn, Sung-Il;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1388-1390
    • /
    • 2007
  • This paper investigates how various concentrations of lithium ion influence on crystallization of MgO in thin films formed by spin coating and an the discharge characteristic in a flat fluorescent lamp structure. The XRD results indicate $Li^+$ ion enhances the growth of MgO crystal in a spin coated thin film. The discharge property with the $Li^+$ ion doped MgO films show the lithium ion in MgO film clearly reduce the initial discharge voltages of test devices. Interestingly, the test panels with various doped MgO film have somewhat higher static memory margin of than that of pure-MgO owing probably to the pore structure of spin coated MgO films. The CL spectra, which confirm that the doping creates defects energy levels in the band gap of MgO, show the $F^+$ center is the main defects in doped MgO films.

  • PDF

NMR을 이용한 홍삼의 용적밀도 측정 및 내부 조직 판별 (Determination of Bulk Density and Internal Structure of Red Ginseng Root Using NMR)

  • 장기철
    • Journal of Ginseng Research
    • /
    • 제22권2호
    • /
    • pp.96-101
    • /
    • 1998
  • This paper describes the determination of bulk density and the discrimination of internal structure of red ginseng by nuclear magnetic resonance (NMR). The 102 red ginseng roots were tested for bulk density. The NMR properties measured by NMR parameters such as spin-lattice relaxation time ($T_1$) and spin-spin relaxation time ($T_2$) were determined using the low field proton NMR analyzer. Bulk density of red ginseng root showed a highly negative significant correlation (r=-0.8934) with the value of $T_1$, but a highly positive significant correlation (r=0.7672 and 0.5909) with the value of T21 (short T2) and T22 (long T2), respectively. Multiple regression equation, Y=-0.0069.$T_1$+0.3044.$T_{21}$-0.0156.$T_{22}$-0.6368, using the MNR parameter values of 80 red ginseng roots can effectively predict the bulk density of 22 red ginseng roots with the correlation coefficient of 0.9396 and the standard error of 0.086. The differences in the internal structure of normal and inside white part of red ginseng were easily found by the signal intensity of NMR image based on magnetic properties of proton nucleus.

  • PDF

Magnetoresistive and Pinning Direction Behaviors of Synthetic Spin Valves with Different Pinning Layer Thickness

  • Cho, Ho-Gun;Kim, Young-Keun;Lee, Seong-Rae
    • Journal of Magnetics
    • /
    • 제7권4호
    • /
    • pp.147-150
    • /
    • 2002
  • The pinning direction, the spin flop behaviors and the magnetoresistive properties in top synthetic spin valve structure [NiFe/CoFe/Cu/CoFe (t$_{p2}$)/Ru/CoFe (t$_{p1}$)/IrMn] were investigated. The magnetoresistive and pinning characteristics of synthetic spin valves strongly depended on the differences in the two pinning layer thickness, ${\Delta}t(=t_{p2}-t_{p1})$. In contrast to the conventional spin valves, the pinning direction (P1) was canted off with respect to the growth field axis with ${\Delta}t$. We found that the canting angle ${\Phi}$ had different values according to the annealing field direction and ${\Delta}t$. When the samples were annealed at above the blocking temperature of IrMn with zero fields, the canted pinned layer could be set along the growth field axis. Because the easy axis which was induced by the growth field during deposition is still active in all ferromagnetic layers except the IrMn at $250{^{\circ}C}$, the pinning direction could be aligned along the growth field axis, even in 0 field annealing.

Effects of Titanium Impurity on the Crystallographic and Spin-rotation Transitions of FeS

  • Nam, Hyo-Duk;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.23-26
    • /
    • 2011
  • The effects of titanium ions on the crystallographic and spin-rotation transitions in iron sulfide have been examined by M$\"{o}$ssbauer spectroscopy in the temperature range of 78 to 600 K. It is noted that the titanium impurity of $Ti_{0.02}Fe_{0.98}S$ affects both the crystallographic and spin-rotation transitions of the iron sulfide. 2% impurity of $Ti^{2+}$ in FeS causes the increase in the difference between the spin rotation and ${\alpha}$ transition temperature by as much as 10 K compared with that for FeS. Both 1c and 2c structures coexist in the range between the ${\alpha}$ transition temperature and approximately 26 K, with a smaller hyperfine field corresponding to the 1c structure. The spin-rotation temperature for $Ti_{0.02}Fe_{0.98}S$ was measured to be 365 K, which is 10 K lower than the ${\alpha}$ transition temperature. By the 2% impurity of $Ti^{2+}$ in FeS the N$\'{e}$el temperature appreciably is not affected.