DOI QR코드

DOI QR Code

Study on Formation of Semitransparent Cu Nanoparticle Layers for Realizing Metal Nanoparticle-Dielectric Bilayer Structures

금속나노입자-유전체 이층 구조 구현을 위한 반투명 Cu 나노입자층 형성에 관한 연구

  • Yoon, Hye Ryeon (Department of Materials Science and Engineering, Hanbat National University) ;
  • Jo, Yoon Ee (Department of Materials Science and Engineering, Hanbat National University) ;
  • Yoon, Hoi Jin (Department of Materials Science and Engineering, Hanbat National University) ;
  • Lee, Seung-Yun (Department of Materials Science and Engineering, Hanbat National University)
  • 윤혜련 (한밭대학교 신소재공학과) ;
  • 조윤이 (한밭대학교 신소재공학과) ;
  • 윤회진 (한밭대학교 신소재공학과) ;
  • 이승윤 (한밭대학교 신소재공학과)
  • Received : 2020.08.12
  • Accepted : 2020.09.10
  • Published : 2020.11.01

Abstract

This study reports the fabrication and application of semitransparent Cu nanoparticle layers. Spin coating and subsequent drying of a Cu colloid solution were performed to deposit Cu nanoparticle layers onto Si and glass substrates. As the spin speed of the spin coating increases, the density of the nanoparticles on the substrate decreases, and the agglomeration of nanoparticles is suppressed. This microstructural variation affects the optical properties of the nanoparticle layers. The transmittance and reflectance of the Cu nanoparticle layers increase with increasing spin speed, which results from the trade-off between the exposed substrate area and surface coverage of the Cu nanoparticles. Since the glass substrates coated with Cu nanoparticle layers are semitransparent and colored, it is anticipated that the application of a Cu nanoparticle-dielectric bilayer structure to transparent solar cells will improve the cell efficiency as well as aesthetic appearance.

Keywords

References

  1. A.A.F. Husain, W.Z.W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, Renewable Sustainable Energy Rev., 94, 779 (2018). [DOI: https://doi.org/10.1016/j.rser.2018.06.031]
  2. J. Sun and J. J. Jasieniak, J. Phys. D: Appl. Phys., 50, 093001 (2017). [DOI: https://doi.org/10.1088/1361-6463/aa53d7]
  3. S. B. Kang, J. H. Kim, M. H. Jeong, A. Sanger, C. U. Kim, C. M. Kim, and K. J. Choi, Light: Sci. Appl., 8, 121 (2019). [DOI: https://doi.org/10.1038/s41377-019-0234-y]
  4. K. Lee, N. Kim, K. Kim, H. D. Um, W. Jin, D. Choi, J. Park, K. J. Park, S. Lee, and K. Seo, Joule, 4, 235 (2019). [DOI: https://doi.org/10.1016/j.joule.2019.11.008]
  5. J. W. Lim, G. Kim, M. Shin, and S. J. Yun, Sol. Energy Mater. Sol. Cells, 163, 164 (2017). [DOI: https://doi.org/10.1016/j.solmat.2017.01.017]
  6. S. Y. Lee, K. S. Bang, and J. W. Lim, J. Electron. Mater., 43, 3204 (2014). [DOI: https://doi.org/10.1007/s11664-014-3286-z]
  7. S. Y. Lee, Korean Patent No. 1015436570000 (2015).
  8. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys., 101, 093105 (2007). [DOI: https://doi.org/10.1063/1.2734885]
  9. H. J. Yoon, Y. Jo, S. Jeong, J. W. Lim, and S. Y. Lee, Appl. Phys. Express, 11, 052302 (2018). [DOI: https://doi.org/10.7567/APEX.11.052302]
  10. Y. Liao, Practical Electron Microscopy and Database 2nd ed. (Global Sino, 2018) p. 1853. http://www.globalsino.com/EM/
  11. M. Hermansson, Colloids Surf., B, 14, 105 (1999). [DOI: https://doi.org/10.1016/S0927-7765(99)00029-6]
  12. E. M. Hotze, T. Phenrat, and G. V. Lowry, J. Environ. Qual., 39, 1909 (2010). [DOI: https://doi.org/10.2134/jeq2009.0462]
  13. H. A. Macleod, Thin-Film Optical Filters 3rd ed. (CRC Press, Boca Raton, USA, 2001) p. 23.
  14. H. Sirringhaus, S. D. Theiss, A. Kahn, and S. Wagner, IEEE Electron Device Lett., 18, 388 (1997). [DOI: https://doi.org/10.1109/55.605448]
  15. M. Chen and J. Gao, Mod. Phys. Lett. B, 14, 103 (2000). [DOI: https://doi.org/10.1142/S0217984900000161]