Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.6.154

Magnetization of a Modified Magnetic Quantum Dot  

Park, Dae-Han (Department of Physics, Soongsil University)
Kim, Nammee (Department of Physics, Soongsil University)
Publication Information
Applied Science and Convergence Technology / v.25, no.6, 2016 , pp. 154-157 More about this Journal
Abstract
The energy dispersion and magnetization of a modified magnetic dot are investigated numerically. The effects of additional electrostatic potential, magnetic field non-uniformity, and Zeeman spin splitting are studied. The modified magnetic quantum dot is a magnetically formed quantum structure that has different magnetic fields inside and outside of the dot. The additional electrostatic potential prohibits the ground-state angular momentum transition in the energy dispersion as a function of the magnetic field inside the dot, and provides oscillation of the magnetization as a function of the chemical potential energy. The magnetic field non-uniformity broadens the shape of the magnetization. The Zeeman spin splitting produces additional peaks on the magnetization.
Keywords
Magnetization; Magnetic quantum dot; Hybrid quantum structure; Spin effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bodo Huckestein and Reiner Kummel, Physics. Rev. B 38, 8215 (1988).   DOI
2 J. M. Luttinger, Phys. Rev. 121, 1251 (1961).   DOI
3 G. Ihm, M. L. Falk, S. K. Noh, J. I. Lee and S. J. Lee, Phys. Rev. B 46, 15530 (1992)   DOI
4 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mor. Phys. 76, 323 (2004).   DOI
5 M. A. McCord and D. D. Awschalom, Appl. Phys. Lett. 57, 2153 (1990).   DOI
6 M. L. Leadbeater, S. J. Allen, Jr., F. DeRosa, J. P. Harbison, T. Sands, R. Ramesh, L. T. Florez, and V. G. Keramidas, J. Appl. Phys. 69, 4689 (1991).   DOI
7 S. H. Park and H. -S. Sim, Phys. Rev. B 77, 075433 (2008).   DOI
8 C.M. Lee, R. C.H. Lee, W.Y. Ruan, M.Y. Chou, and A. Vyas, Solid State Commun. 156, 49 (2013)   DOI
9 Dali Wang and Guojun Jin, Phys. Lett. A 373, 4082 (2009).   DOI
10 Nammee Kim, G. Ihm, H.-S. Sim, and T. W. Kang, Phys. Rev. B 63, 235317 (2001).   DOI
11 M. A. Wilde, D. Reuter, Ch. Heyn, A. D. Wieck, and D. Grundler, Phys. Rev. B 79, 125330 (2009).   DOI
12 B. Rupprecht, S. Heedt, H. Hardtdegen, Th. Schapers, Ch. Heyn, M. A. Wilde, and D. Grundler, Phys. Rev. B 87, 035307 (2013).   DOI
13 G. Ihm, M. L. Falk, S. K. Noh, S. J. Lee, and T. W. Kim, Phys. Rev. B 46, 15270 (1992).   DOI
14 C. M. Lee and K. S. Chan, J. Appl. Phys. 114, 143708 (2013).   DOI