Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.6.460

Study on Formation of Semitransparent Cu Nanoparticle Layers for Realizing Metal Nanoparticle-Dielectric Bilayer Structures  

Yoon, Hye Ryeon (Department of Materials Science and Engineering, Hanbat National University)
Jo, Yoon Ee (Department of Materials Science and Engineering, Hanbat National University)
Yoon, Hoi Jin (Department of Materials Science and Engineering, Hanbat National University)
Lee, Seung-Yun (Department of Materials Science and Engineering, Hanbat National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.6, 2020 , pp. 460-464 More about this Journal
Abstract
This study reports the fabrication and application of semitransparent Cu nanoparticle layers. Spin coating and subsequent drying of a Cu colloid solution were performed to deposit Cu nanoparticle layers onto Si and glass substrates. As the spin speed of the spin coating increases, the density of the nanoparticles on the substrate decreases, and the agglomeration of nanoparticles is suppressed. This microstructural variation affects the optical properties of the nanoparticle layers. The transmittance and reflectance of the Cu nanoparticle layers increase with increasing spin speed, which results from the trade-off between the exposed substrate area and surface coverage of the Cu nanoparticles. Since the glass substrates coated with Cu nanoparticle layers are semitransparent and colored, it is anticipated that the application of a Cu nanoparticle-dielectric bilayer structure to transparent solar cells will improve the cell efficiency as well as aesthetic appearance.
Keywords
Nanoparticle; Cu; Dielectric; Structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.A.F. Husain, W.Z.W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, Renewable Sustainable Energy Rev., 94, 779 (2018). [DOI: https://doi.org/10.1016/j.rser.2018.06.031]   DOI
2 J. Sun and J. J. Jasieniak, J. Phys. D: Appl. Phys., 50, 093001 (2017). [DOI: https://doi.org/10.1088/1361-6463/aa53d7]   DOI
3 S. B. Kang, J. H. Kim, M. H. Jeong, A. Sanger, C. U. Kim, C. M. Kim, and K. J. Choi, Light: Sci. Appl., 8, 121 (2019). [DOI: https://doi.org/10.1038/s41377-019-0234-y]   DOI
4 K. Lee, N. Kim, K. Kim, H. D. Um, W. Jin, D. Choi, J. Park, K. J. Park, S. Lee, and K. Seo, Joule, 4, 235 (2019). [DOI: https://doi.org/10.1016/j.joule.2019.11.008]   DOI
5 J. W. Lim, G. Kim, M. Shin, and S. J. Yun, Sol. Energy Mater. Sol. Cells, 163, 164 (2017). [DOI: https://doi.org/10.1016/j.solmat.2017.01.017]   DOI
6 S. Y. Lee, K. S. Bang, and J. W. Lim, J. Electron. Mater., 43, 3204 (2014). [DOI: https://doi.org/10.1007/s11664-014-3286-z]   DOI
7 S. Y. Lee, Korean Patent No. 1015436570000 (2015).
8 S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys., 101, 093105 (2007). [DOI: https://doi.org/10.1063/1.2734885]   DOI
9 H. J. Yoon, Y. Jo, S. Jeong, J. W. Lim, and S. Y. Lee, Appl. Phys. Express, 11, 052302 (2018). [DOI: https://doi.org/10.7567/APEX.11.052302]   DOI
10 Y. Liao, Practical Electron Microscopy and Database 2nd ed. (Global Sino, 2018) p. 1853. http://www.globalsino.com/EM/
11 M. Hermansson, Colloids Surf., B, 14, 105 (1999). [DOI: https://doi.org/10.1016/S0927-7765(99)00029-6]   DOI
12 E. M. Hotze, T. Phenrat, and G. V. Lowry, J. Environ. Qual., 39, 1909 (2010). [DOI: https://doi.org/10.2134/jeq2009.0462]   DOI
13 H. A. Macleod, Thin-Film Optical Filters 3rd ed. (CRC Press, Boca Raton, USA, 2001) p. 23.
14 H. Sirringhaus, S. D. Theiss, A. Kahn, and S. Wagner, IEEE Electron Device Lett., 18, 388 (1997). [DOI: https://doi.org/10.1109/55.605448]   DOI
15 M. Chen and J. Gao, Mod. Phys. Lett. B, 14, 103 (2000). [DOI: https://doi.org/10.1142/S0217984900000161]   DOI