• Title/Summary/Keyword: spin polarization

Search Result 144, Processing Time 0.034 seconds

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD

  • Isayev, Alexander A.;Yang, Jong-Mann
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.

Spin Polarization of CuD Nanowires

  • Hong, Ji-Sang
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.20-24
    • /
    • 2006
  • Very recently, it was presented that the one dimensional (1D) CuO atomic chains can maintain large magnetic moments. In this work, we analyzed m-resolved density of states (DOS) to understand the peculiar spin polarization occurred in Cu atoms. It was found that the $\mid{m}\mid=1$ states play an essential role in the spin polarization of Cu atoms. In addition, we calculated magnetic anisotropy energy (MAE) and observed that the distribution of MAE is strongly sensitive to the interatomic distance between Cu and O atoms. Besides, it was revealed that the contribution to MAE comes for the second half of Brillouin zone (BZ).

Spin-polarization and x-ray magnetic circular dichroism in GaAs

  • Zohar, S.;Ryan, P.J.;Kim, J.W.;Keavney, D.J.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1182-1184
    • /
    • 2018
  • The combination of angular spin momentum with electronics is a promising successor to charge-based electronics. The conduction bands in GaAs may become spin-polarized via optical spin pumping, doping with magnetic ions, or induction of a moment with an external magnetic field. We investigated the spin populations in GaAs with x-ray magnetic circular dichroism for each of these three cases. We find strong anti-symmetric lineshapes at the Ga $L_3$ edge indicating conduction band spin splitting, with differences in line width and amplitude depending on the source of spin polarization.

Production of Hyperpolarized 129Xe Using Spin Exchange Optical Pumping

  • Kavtanyuk, Vladimir Vladimirovich;Kim, Wooyoung;Ando, Yu;Chebotaryov, Sergey;Seon, Yonggeun;Tan, Joshua Artem
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1458-1465
    • /
    • 2018
  • We present a constructed setup for polarizing $^{129}Xe$ noble gas. Hyperpolarized $^{129}Xe$ has been obtained via spin exchange with an optically pumped rubidium vapor. Optical pumping is based on polarizing the valence electron of rubidium by the resonant absorption of a circularly polarized laser light. The magnetic field of 30 G was used for obtaining $^{129}Xe$ polarization. The apparatus for detecting polarization is a nuclear magnetic resonance spectrometer. The highest $^{129}Xe$ polarization of 54% has been obtained using 60 W circularly polarized laser light with wavelength of 794.7 nm. The measured longitudinal relaxation time of the hyperpolarized $^{129}Xe$ was 72.3 minutes.

Magneto-transport properties of CVD grown MoS2 lateral spin valves

  • Jeon, Byeong-Seon;Lee, Sang-Seon;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.336-336
    • /
    • 2016
  • We have investigated magneto-transport properties in a MoS2 lateral spin-valve structures for different ferromagnetic CoFe electrode shapes and MoS2 channel lengths. For these devices, high quality and large-scale MoS2 thin films were synthesized through sulfurization of epitaxial MoO3 films and these sulfurized-MoO3 thin films properties are in good agreements with measurements on exfoliated MoS2 film. Magneto-transport measurements show a clear rectangular magnetoresistance signal of 0.16% and a spin polarization of 0.00012%. By using the one-dimensional spin diffusion equation, we extracted the spin diffusion length and coefficient, finding them to be 12 nm and $1.44{\times}10-3cm2/s$, respectively. These small values of magnetoresistance and spin polarization could be enhanced by appeasement of conductivity mismatch between the ferromagnet and semiconductor interface.

  • PDF

Diffusion Theory of Spin Injection (스핀 주입에 대한 퍼짐 이론)

  • Lee, B.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2006
  • The diffusion theory for spin injection from magnetic layer into nonmagnetic layer was reviewed. Basic equations were derived and applied to a ferromagnet/semiconductor/ferromagnet system. The spin polarization and magnetoresistance were calculated. The reason for difficulty in detecting spin injection with magnetoresistance was explained, and a possible solution was discussed.

전계방출 전자원을 이용한 SEMAP(Scanning Electron Microscopy with Polarization Anlysis) 개발

  • Lee, Sang-Seon;Kim, Won-Dong;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.581-581
    • /
    • 2012
  • 나노스케일에서의 자구체(magnetic domain), 자화벽(magnetic domain wall)에 대한 연구가 활발하게 진행되고 있으며 특히 자화벽의 위치를 임의로 제어할 수 있는 기술을 응용한 메모리 소자에 대한 연구가 활발하다. 반면에 이러한 연구에 필수적인 자구체, 자화벽 이미징 장비는 매우 미비한 상황이다. 이와 같은 자성이미징(magnetic domain image), 자화벽(magnetic domain wall)을 연구하는데 있어 가장 핵심적인 장비가 SEMPA(Scanning Electron Microscopy with Polarization Analysis)이다. 일반적으로 SEM의 경우 고 에너지 빔의 전자 빔을 주사 시키고 이때 발생되는 이차 전자의 수를 2차원상의 영역에 따라 달라지는 비로 형상을 측정하게 된다. 이때 전자의 수 뿐만 아니라 이들의 spin polarization을 측정할 수 있다면 형상뿐 만 아니라 표면에서의 스핀 상태를 동시에 측정할 수 있게 된다. 기 개발된 W-filament source를 이용한 SEMPA는 field emission source에 비하여 전자빔의 세기가 약하며 이차 전자의 수도 적어 spin polarization 감도가 현저히 떨어진다. 또한 초고진공($1{\times}10^{-10}torr$)에서 사용할 수 없어 측정시료의 contamination을 방지할 수 없다. 이러한 문제점들을 보안하기 위하여 field emission source를 이용한 FE-SEMPA를 개발 중이며 2차전자의 spin polarization감도를 증가시키기 위하여 monte carlo simulation과 전산시늉등울 통해 스핀 검출기를 개발 및 연구결과를 발표하고자 한다.

  • PDF

SPIN POLARIZED PHOTOEMISSION AND MAGNETIC CIRCULAY DICHROISM STUDY OF FeAl THIN FILMS

  • Kim, K.W.;Kudryavtsev, Y.V.;Chang, G.S.;Whang, C.N.;Lee, Y.P.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.53-58
    • /
    • 1997
  • It is well known that the equiatomic FeAl alloy crystallizes in a paramagnetic CsCl structure and is very stable in a wide temperature range owing to a significant charge transfer from Al to Fe. A presence of structural defects normally enhances the magnetic and magneto-optical properties of this alloy. In this study spin-resolved photoemission and magnetic circular dichroism (MCD) were carried out on both ordered and disordered $Fe_{0.52}Al_{0.48}$ alloy films. The disordered state in the alloy films was obtained by a vapor quenching deposition on cooled substrates. It is shown that the order-disorder transition in the Fe0.52Al0.48 alloy films leads to a significant change in the spin polarization. Form the MCD results the orbital and spin magnetic moments of the constituent atoms are obtained. According to the sum rule the spin and orbital magnetic moments of Fe in the disordered FeAl film are $\mu\frac{SR}{spin}=0.8\mu_B$ and $\mu\frac{SR}{orb}=0.14\mu_B$ respectively. The spin magnetic moment is also evaluated to be $\mu\frac{BR}{spin}=0.77\mu_B$ by the branching ration method employing a photon polarization of 90%.

  • PDF