Browse > Article
http://dx.doi.org/10.5303/JKAS.2010.43.5.161

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD  

Isayev, Alexander A. (Kharkov Institute of Physics and Technology)
Yang, Jong-Mann (Department of Physics and the Institute for the Early Universe, Ewha Womans University)
Publication Information
Journal of The Korean Astronomical Society / v.43, no.5, 2010 , pp. 161-168 More about this Journal
Abstract
Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.
Keywords
Neutron star models; magnetar; neutron matter; Skyrme interaction; strong magnetic field; spin polarization; finite temperature;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Kutschera, M., & Wojcik, W. 1994, Polarized Neutron Matter with Skyrme Forces, Phys. Lett. B, 325, 271   DOI   ScienceOn
2 Lai, D. & Shapiro, S. 1991, Cold Equation of State in a Strong Magnetic Field: Effects of Inverse Beta-Decay, ApJ, 383, 745   DOI
3 Mao, G.-J., Kondratyev, V. N., Iwamoto, A., Li, Z.-X., Wu, X.-Z., Greiner, W. & Mikhailov, I. N. 2003, Neutron Star Composition in Strong Magnetic Fields, Chin. Phys. Lett., 20, 1238.   DOI   ScienceOn
4 Marcos, S., Niembro, R., Quelle, M. L., & Navarro, J. 1991, Magnetic Susceptibility of Neutron Matter in a Relativistic Sigma + Omega + Pi + Rho Hartree-Fock Approach, Phys. Lett. B, 271, 277   DOI   ScienceOn
5 Maruyama, T., & Tatsumi, T. 2001, Ferromagnetism of Nuclear Matter in the Relativistic Approach, Nucl. Phys. A, 693, 710   DOI   ScienceOn
6 Ostgaard, E. 1970, Neutron Matter Binding Energy and Magnetic Susceptibility, Nucl. Phys. A, 154, 202   DOI   ScienceOn
7 Perez-Garcia, M. A. 2008, Magnetization of a Neutron Plasma with Skyrme and Gogny Forces in the Presence of a Strong Magnetic Field, Phys. Rev. C, 77,065806   DOI   ScienceOn
8 Pandharipande, V. R., Garde, V. K., & Srivastava, J. K. 1972, The Magnetic Susceptibility of Dense Neutron Matter, Phys. Lett. B, 38, 485   DOI   ScienceOn
9 Reddy, S., Prakash, M., Lattimer, J. M., & Pons, J. A. 1999, Effects of Strong and Electromagnetic Correlations on Neutrino Interactions in Dense Matter, Phys. Rev. C 59, 2888   DOI   ScienceOn
10 Rice, M. J. 1969, The Hard-Sphere Fermi Gas and Ferromagnetism in Neutron Stars, Phys. Lett. A, 29, 637   DOI   ScienceOn
11 Duncan, R. C. & Thompson, C. 1992, Formation of Very Strongly Magnetized Neutron Stars - Implications for Gamma-Ray Bursts, ApJ, 392, L9   DOI
12 Fantoni, S., Sarsa, A., & Schmidt, E. 2001, Spin Susceptibility of Neutron Matter at Zero Temperature, Phys. Rev. Lett., 87, 181101   DOI   ScienceOn
13 Haensel, P. 1975, Magnetic Susceptibility of Neutron Matter, Phys. Rev. C, 11, 1822   DOI
14 Ibrahim, A. I., Sa¯-Harb, S., Swank, J. H., Parke, W., & Zane, S. 2002, Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20, ApJ, 574, L51   DOI
15 Isayev, A. A. 2003, Competition of Ferromagnetic and Antiferromagnetic Spin Ordering in Nuclear Matter, JETP Letters, 77, 251   DOI
16 Isayev, A. A. 2005, Finite Temperature Effects in Antiferromagnetism of Nuclear Matter, Phys. Rev. C, 72, 014313   DOI   ScienceOn
17 Isayev, A. A. 2006, Spin Ordered Phase Transitions in Isospin Asymmetric Nuclear Matter, Phys. Rev. C, 74, 057301   DOI   ScienceOn
18 Isayev, A. A. 2007, Unusual Temperature Behavior of Entropy of Antiferromagnetic Spin State in Nuclear Matter with E®ective Finite Range Interaction, Phys. Rev. C, 76, 047305   DOI   ScienceOn
19 Isayev, A. A., & Yang, J. 2004a, Spin Polarized States in Strongly Asymmetric Nuclear Matter, Phys. Rev. C 69, 025801   DOI   ScienceOn
20 Isayev, A. A., & Yang, J. 2004b, Antiferromagnetic Spin Phase Transition in Nuclear Matter with Effective Gogny Interaction, Phys. Rev. C, 70, 064310   DOI   ScienceOn
21 Isayev, A. A., & Yang, J. 2009, Spin-Polarized States in Neutron Matter in a Strong Magnetic Field, Phys. Rev. C, 80, 065801   DOI   ScienceOn
22 Akhiezer, A. I., Isayev, A. A., Peletminsky, S.V., Rekalo, A. P., & Yatsenko, A. A. 1997, Theory of Superfuidity of Nuclear Matter Based on the Fermi-Liquid Approach, JETP, 85, 1   DOI
23 Akhiezer, A. I., Krasil'nikov, V. V., Peletminsky, S. V., & Yatsenko, A. A. 1994, Research on Superfuidity and Superconductivity on the Basis of the Fermi Liquid Concept, Phys. Rep., 245, 1   DOI   ScienceOn
24 Akhiezer, A. I., Laskin, N. V., & Peletminsky, S. V. 1996, Spontaneous Magnetization of Dense Neutron Matter and Electron-Positron Plasma, Phys. Lett. B, 383, 444   DOI   ScienceOn
25 Amsler, C., et al. (Particle Data Group) 2008, Review of particle physics, Phys. Lett. B, 667, 1   DOI   ScienceOn
26 Backmann, S. O., & KÄallman, C. G. 1973, Calculation of Landau's Fermi-Liquid Parameters in Pure Neutron Matter, Phys. Lett. B, 43, 263   DOI   ScienceOn
27 Beraudo, A., De Pace, A., Martini, M., & Molinari, A. 2004, Mean Field at Finite Temperature and Symmetry Breaking, Ann. Phys. (NY), 311, 81   DOI   ScienceOn
28 Bordbar, G. H., & Bigdeli, M. 2007, Polarized Neutron Matter: A Lowest Order Constrained Variational Approach, Phys. Rev. C, 75, 045804   DOI   ScienceOn
29 Broderick, A., Prakash, M., & Lattimer, J. M. 2000, The Equation of State of Neutron Star Matter in Strong Magnetic Fields, ApJ, 537, 351   DOI
30 Cardall, C., Prakash, M., & Lattimer, J. M. 2001, Effects of Strong Magnetic Fields on Neutron Star Structure, ApJ, 554, 322   DOI
31 Chabanat, E., Bonche, P., Haensel, P., Meyer, J., & Schaeffer, R. 1998, A Skyrme Parametrization from Subnuclear to Neutron Star Densities. 2. Nuclei far from Stablities, Nucl. Phys. A, 635, 231   DOI   ScienceOn
32 Rikovska Stone, J., Miller, J.C., Koncewicz, R., Stevenson, P. D., & Strayer, M. R. 2003, Nuclear Matter and Neutron Star Properties Calculated with the Skyrme Interaction, Phys. Rev. C, 68, 034324   DOI
33 Rios, A., Polls, A., & Vida~na, I. 2005, Ferromagnetic Instabilities in Neutron Matter at Finite Temperature with the Skyrme Interaction, Phys. Rev. C, 71, 055802   DOI   ScienceOn
34 Sammarruca, F., & Krastev, P. G. 2007, Spin Polarized Neutron Matter within the Dirac-Brueckner-Hartree-Fock Approach, Phys. Rev. C, 75, 034315   DOI   ScienceOn
35 Silverstein, S. D. 1969, Criteria for Ferromagnetism in Dense Neutron Fermi Liquids-Neutron Stars, Phys. Rev. Lett., 23, 139   DOI
36 Thompson, C., & Duncan, R. C. 1996, The Soft Gamma Repeaters As Very Strongly Magnetized Neutron Stars. 2. Quiescent Neutrino, X-Ray, And Alfven Wave Emission, ApJ, 473, 322   DOI
37 Vautherin, D., & Brink, D. M. 1972, Hartree-Fock Calculations with Skyrme's Interaction. 1. Spherical Nuclei, Phys. Rev. C, 5, 626   DOI
38 Vidana, I., Polls, A., & Ramos, A. 2002, Spin Polarized Neutron Matter and Magnetic Susceptibility within the Brueckner-Hartree-Fock Approximation, Phys. Rev. C, 65, 035804   DOI   ScienceOn
39 Viduarre, A., Navarro, J., & Bernabeu, J. 1984, Magnetic Susceptibility of Neutron Matter and Nuclear Effective Interactions, A&A, 135, 361
40 Woods, P. M., & Thompson, C. 2006, Soft Gamma Repeaters and Anomalous X-ray Pulsars: Magnetar Candidates, in Compact Stellar X-ray Sources, edited by W.H.G. Lewin and M. van der Klis, Cambridge University Press, New York, 2006, p. 547
41 Kouveliotou, C., et al. 1998, An X-Ray Pulsar With A Superstrong Magnetic Field In The Soft Gamma-Ray Repeater Sgr 1806-20, Nature, 393, 235   DOI   ScienceOn
42 Chakrabarty, S., Bandyopadhyay, D. & Pal, S. 1997, Dense Nuclear Matter In A Strong Magnetic Field, Phys. Rev. Lett., 78, 2898   DOI   ScienceOn